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Suppose you’re modeling a phenomenon and you’re thinking about it recursively. But 
you want an analytic representation. What does that mean? And how do you do it? 
We’ll start out ridiculously simply and then make it harder.

Ridiculously Simple
Suppose you’re counting the number of cockroaches entering your Roach Motel® and are 
trying to model the total number of roaches in the motel. If you see that two are coming 
in every minute, you could say

  Pn = Pn−1 +2

at is, the total population P of roaches in any given minute (minute number n) is two 
more than it was in the previous minute (n – 1).

Now suppose you want an analytic function for the same thing. By “analytic function” 
we mean, a rule that we can use to find out the population at any given minute. It should 
start with “P(n) =” which is just like the more familiar “f(x) =” but with different letters.

What we have already is a recurrence relation, that is, an expression that uses recursion to 
figure out the population. As you can see, you can’t just plug in n. Instead, you have to 
know the population in the previous minute in order to figure out the population now.

e analytic function for this situation would be

  P(n)= P0 +2n.

Make sure this makes sense to you. P0 is the population when n = 0. Notice how we have 
to “anchor” the population somewhere in order to find the total number of roaches; it is 
not enough to know that there are 2 more every minute. We have to know how many 
there were at minute zero to find the total. 

(Note: this is just like the way mathematical induction works, or integration, or solving 
differential equations. Putting it another way, the recurrence relation tells you the slope, 
but not the intercept.)

e key thing here is that the analytic formula makes sense. Every minute there are two 
more roaches, and when n = 0, the population is P0. So if there were 7 roaches in the 
motel at time n = 0, there will be 7 + (5 * 2) = 17 roaches at minute 5. 
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Generalizing Simplicity
We can generalize this result. If we have a recurrence relation (a.k.a. recursive function)

  yn = yn−1 + k,

the corresponding analytic function is

  y(n)= y0 +nk.

at is, n is the “x” variable, y0 is the intercept, and k is the slope.

Getting Exponentially More Complicated1

Now suppose the roach motel situation is different: every minute the number of 
roached increases by 10%. We would express that recursively as:

  Pn = 1.10Pn−1.

at is, instead of adding a constant every minute, we multiply by that constant. So

  

P1 = 1.10P0

P2 = 1.10P1 = 1.10 1.10P0( ) = 1.10( )2 P0

P3 = 1.10P2 = 1.10 1.102 P0( ) = 1.10( )3 P0 , and so forth.

is situation creates exponential behavior—just like compound interest. Looking at 
the pattern we were coming up with, you can imagine that the analytic form is:

  P(n)= P0 1.10( )n .

(We could prove this using induction, but let’s not.)

To generalize, if we have

  yn = ryn−1 ,

the analytical version will be

  y(n)= y0rn .

is is one of the familiar exponential forms. If the ratio r is greater than 1, it’s 
increasing; if r is less than one, it’s decreasing.
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Now, Genuinely Hard
We’ve seen how to get analytic functions from recurrence relations in two cases: when 
the recurrence adds a constant, and when it multiples by a constant. But what if you do 
both at once? at is, suppose you have

  yn = ayn−1 + b ?

(is arises in the Tinkertoy problem in EGADs. Find it on www.eeps.com. It also is at 
the root of the famous problem, Sally McCracken and the Pig-Eyed Tricksters. See 
Marilyn Burns, Math for Smarty Pants.)

What can we do to make this analytic? e trick is to look for patterns (as we did with 
the exponential) by finding a few specific terms. We expect to use y0 in our solution (all 
the others have) so we’ll start with y1:

  

y1 = ay0 + b

y2 = ay1 + b = a ay0 + b( )+ b = a2 y0 + ab+ b( )
= y0a2 + b a+1( )

y3 = ay2 + b = a a2 y0 + ab+ b( )⎡⎣ ⎤⎦+ b = a3 y0 + a2b+ ab+ b( )
= y0a3 + b a2 + a+1( )

y4 = ay3 + b = y0a4 + (a3b+ a2b+ ab+ b)

= y0a4 + b a3 + a2 + a+1( ), 
and so forth.

Do you see the pattern? In general,

   
y(n)= y0an + b an−1 + an−2 ++ a2 + a+1( ), or y(n)= y0an + b ak

0

n−1

∑ .

e an part resembles the exponential solution. But what about that summation? at’s 
just a finite geometric series. We won’t do that derivation here, but the formula is:

  
ak

k=0

n−1

∑ =
an −1
a−1

.

is means that the analytic form of our general linear recurrence relation is:

  
y(n)= y0an + b

an −1
a−1

.

Whew!
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An Example
at looks so formidable, let’s do an example with easy numbers:

A magical room will double the number of cantaloupes inside it each night. e zeroth  
night there are 10 cantaloupes. At the end of every night, aer the doubling, the 
Cantaloupe Elf who eeps the magic running takes five cantaloupes away for her family.  
How many cantaloupes are there aer three nights?

Answer: We could do it one night at a time. 

• First night, we double 10 to get 20, subtract 5 to get 15.

• Second night, double 15 to get 30, subtract 5 to get 25.

• ird night, double 25 to get 50, subtract 5 to get 45.

Or we could use the formula we just derived. 

In this case, n = 3, y0 = 10, a = 2, and b = –5.

So we plug into the formula to get

  

y(3)= (10)(23 )−5
23 −1
2−1

⎛
⎝⎜

⎞
⎠⎟

= 80−5×7
= 45.

In this case, it was a tossup which was better, but if a is not an integer or n is large, the 
formula will save you time.
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