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Abstract

This paper describes a species of variable-width histogram suitable for use in K-12 and
university settings. In these histograms, called Ntigrams, we divide the sample into bins of
equal frequency rather than bins of equal width. Thus an Ntigram tends to show relevant
features in distributions by giving more detail where the density of high and less detail where

density is low.

If you’re looking at a distribution of continuous data—for example, the ages of 100 people—it’s
good to use a display that shows all of the data, for example, a one-dimensional scatter plot: a
dot plot. But sometimes, the dot plot is impractical. Maybe there are too many cases for the plot
to make sense. Or perhaps you're comparing the distribution to another, and because the sample

sizes are different, it’s hard to make the comparison.
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Figure 1: Comparing age distributions. The first graph is a sample of 300 from Miami,
Florida. The second is a sample of 500 from New Haven, Connecticut.

Look at Figure 1. Are the distributions very different? It’s hard to say. We need to use some other
display, one that summarizes the data. We often use histograms or box plots for this purpose,
but box plots and traditional histograms have disadvantages. We’ll discuss the problems here and
propose an alternative we call the “Ntigram” (pronounced en-ti-gram). The Ntigram is reminiscent
of density-trace plots such as the violin plot (Hintze and Nelson 1998) but has other interesting

properties.



1 What’s Wrong with Box Plots

Box plots (Tukey 1977) have become very popular in school data curricula starting in the middle
years. The box shows the median and the upper and lower quartiles. Depending on the particular
species of plot, “whiskers” show the full range, or only part of the range with individual points for
the most extreme values. Some box plots show other values as well, such as the mean.

While box plots are useful, especially for comparing more than two groups, and while they fulfill
their original mission of being reasonably easy to make by hand, they suffer from an interesting
problem: they can confuse students who think that the biggest boxes represent either the most
points or the biggest density of points (Bakker 2004; Bakker et al. 2005). They also suggest, by
their appearance, that the data in the whiskers might be less important, whereas they are only less
central.

Figure 2: Dot plot and box plot for the New
Haven data. Notice how the second quartile,
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2 What’s Wrong with Histograms

The traditional histogram—the version we most often use in school mathematics—has equal-width
bars with heights determined by the frequency of cases in the interval. Histograms show us the
shapes of distributions.

The problem is deciding on the width of the bins. If the bins are too wide, you can’t see important
structure in the distribution. But if they’re too small—and this is the most dangerous thing—it’s
easy to see structure where there is none; that is, the counts in the bins get so small that differences
with nearby bins are likely to be due to chance. And while experienced statistics students may
recognize this, novices may get confused. Figure 3 shows three extreme examples.

To recapitulate, if the bin size is small enough to see the structure in the dense part of the distribu-
tion, a histogram may show misleading, “unreal” structure in the sparse regions. Interestingly, this
problem occurs even with more sophisticated displays. For example, in computing smooth kernel
density estimators, choosing a kernel bandwidth that is too small risks showing spurious details at
low densities (Haughton and Phong 2004).
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Figure 3: Three histograms of the same 500 ages from New Haven. In the first, the peak
near age 25 is invisible. In the second, students may erroneously report a peak at 88 or a
dip at 73. The third alternates between tall and short rectangles because bins alternate
between including three (integer) ages and only two.

3 A Solution

Why not use small bins when the data is dense and wide bins where the data is sparse?

We can. More general histograms have variable-width bins (Freedman et al. 1997). But to work
properly, they must have density, not frequency, on the (usually vertical) axis. Then the area of
each box is equal to the number of cases it represents. For an age distribution, for example, the
density axis will be in units of people per year. Students seldom see these, and even we practitioners
sometimes scratch our heads when we come across one. But they work well to show us the shape of
the distribution because of the proportionality between frequency and area. This proportionality
also holds for the same-bin-width, traditional school histogram; but it is decidedly not true for the
box plot.

What would happen if we made a histogram where the bin boundaries were set at the quartiles?
That we see in Figure 4.

Figure 4: The box plot from Figure 2 be-
neath a new histogram having four bins of
unequal width. Note the density axis, which
is in units of people per year. To find the
4 number of people in a rectangle, multiply its
width (in years) times the density. In this
case, since N=>500, there are 125 in each one.
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Now the box plot’s problems are solved: the densest part of the distribution is highest; the “tails”—
where half of the people belong—are not relegated to whisker status; and the eye easily sees the
shape of the distribution. What about the problems with the histogram? We have four bars as in



Figure 3, but the main peak is clear—and the little jiggles are invisible.

Suppose we want more detailed information about the distribution? Instead of proceeding to the
general histogram—with bin boundaries in arbitrary places—let us keep an important feature of
the 4-bin plot: each bin had the same number of people in it. We will limit the histogram in the
opposite way from the traditional one. Instead of using bins of equal width but unequal numbers of
cases, we will make bins of unequal width but equal number. This has the happy result of widening
the bins where the distribution is sparse (and features tend not to be “real”) and narrowing them
where the distribution is dense (and the higher numbers support finding real features).

With this restriction, we don’t have to decide about where to place the bin boundaries, only how
many bins we want. The population is thus divided in to quartiles, quintiles, deciles, or whatever.
We could call them N-tiles, whence the name Ntigram.

While one would hardly ask students to make Ntigrams by hand (that is what stem-and-leaf plots
and box plots were originally designed for, after all), technology makes them accessible. One could
use high-end software to construct such plots, but where can K—12 students (and non-programmers)
see such things? Tinkerplots (Konold 2004) can create a graph something like what we're talking
about. Figure 5 shows the New Haven data with shading that shows the positions of deciles.

Figure 5: Dot plot from Tinker-
Plots of ages for the New Haven
sample of 500. The stripes in the
background show the deciles: the
same number of points lie in each
stripe.

Still, this is not a histogram. The true Ntigram appears in a data analysis package called Fathom
(KCP Technologies 2000). Figure 6 is a 10-bin Ntigram (perhaps a “10tigram”) for our New Haven
data; you can see most of the features of the distribution.

Figure 6: 10-bin Ntigram for New Haven
population sample of 500.
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The Ntigram has a chunky clarity partway between the traditional histogram and the sleek, hi-tech
violin plot. And with an Ntigram, students can (usually) tell which bin each case belongs to; this
makes it more concrete. Students can also use the Ntigram to compare n-tiles directly, and thus to
compare distributions. Figure 7 shows back-to-back 10-bin Ntigrams for New Haven and Miami.
There you can see that there are proportionally fewer children in the New Haven sample, that the



“student” peak is younger there, and that Miami’s bulge of older people occurs around age 60, not
in the oldest decile.

Figure 7: Back-to-back 10-bin Ntigrams of
age for Miami and New Haven. As in Fig-
ure 1, there are 300 cases from Florida and
500 from Connecticut.

4 Details and Limitations

We will not describe the nitty-gritty of the Ntigram here. There are, indeed, different reasonable
ways to construct such a display. There are two main issues. As with the box plot, one has to
decide the locations of the bin boundaries, and one solution is to choose the positions of orthodox
percentiles. Another issue is whether to split cases between bins so that the bins all have the same
frequency—and therefore the same area—even though the frequencies may not be whole numbers.
(This is what Fathom does.)

Despite some advantages, Ntigrams are not always the best display. That the vertical axis is density
instead of frequency can perplex some learners. And an Ntigram takes up more space than the
compact box plot. There are technical limitations as well: you need enough cases that dividing
the data into n bins makes sense for your sample size. If there are enough identical values that
two n-tiles are the same (i.e., the width of a bin is zero), the density in the bin is infinite and the
display does not make as much sense.
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