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Phase I Objectives

Here are the objectives from the Phase I proposal:

1. Identify topics in various disciplines suitable for lessons [that integrate mathematics into sci-

ence classrooms through data]. This we will do in collaboration with teachers and scientists. 

2. Create a series of classroom scenarios that show uses of Fathom in science education connect-

ing to mathematics in different modes and using different sources of data.

3. Develop a list of desired enhancements to Fathom based on identified needs. Implement a 

selected subset of this list.

4. Develop and field test three prototype lessons for high school science using Fathom as a data 

analysis vehicle.

5. Learn more about the barriers that stand in the way of teachers’ using technology and curricu-

lum materials like those we will produce, and some ways of overcoming those barriers.

Summary of the Research

Let’s look briefly at what we did according to the objectives in the previous section.

1. In the advisory board meeting, through extensive readings of policy and research documents 

as well as existing curriculum materials, and through meetings with other scientists and visits 

to teachers’ classrooms, we identified specific topics suitable for lessons. Some of these results 

were as you might expect: for example, it makes sense to integrate functions into physics. But 

there were some surprises:

• There are areas of learning that reside “in the cracks” between science and mathematics. 

We believe they are essential to basic understanding of science, but they do not appear 

explicitly in standards documents. We describe one in “Measurement” on page 10.

• With our innovations in software and curriculum design, we can introduce topics that used 

to be too difficult or cumbersome. Some of these topics may be intrinsically interesting to 

students; others may help students understand scientific principles more deeply than their 

traditional counterparts do. See, for example, “Numerical Modeling” on page 11. 

2. We have created a number of scenarios for integrating mathematics into high-school and early 

college science classrooms. We envision “replacement labs” that extend a typical laboratory 

activity to include more mathematics in the form of data analysis. We also imagine new types 

of data-rich problem sets and longer, multi-session units. More important than these scenarios, 

though, are these principles for lesson design:

• Technology must relieve tedium for the student but must not relieve the student of think-

ing. In general, this means that we let the computer do the calculation, but insist that the 

student specify it symbolically. 

• It is data analysis, not data, that injects mathematics into science. Mathematics works on 

data: to make it understandable, and to help us interpret it. This is in contrast to the com-
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mon practice of using mathematics in lectures to describe theory, and then simplifying the 

mathematics when you go to the lab.

• Data come from a variety of sources; some depend heavily on technology. Students need 

to use a range of data sources. We describe these in “Sources of Data” on page 9.

• To the extent they can, students should use mathematics as scientists do in real scientific 

investigations. This mathematics takes many forms, and occurs at different stages in the 

investigation—in more places than we had expected. We have identified many of these; 

see “How Scientists Use Mathematics” on page 12. 

• In general, we look for opportunities for students to use functions where traditional curric-

ula look at constants. This elevates the mathematics, and the science comes with it: stu-

dents look at broader principles rather than particular cases.

• That said, many students have trouble with comparatively simple mathematics in unusual 

contexts; we can do a great service by highlighting these simple topics where they are 

essential for data analysis.

3. Our subcontractor, KCP Technologies, made four prototype enhancements to Fathom at our 

request: we can now get data directly from probes; we can plot more than one series at a time; 

we have a built-in timer; and we can write new functions as plug-ins. Those were the most 

urgently-needed features, and they make science development a lot easier. Working with them 

has clarified what else we need to do in future work in this area. See “Software Enhancements” 

on page 16. 

4. We field-tested one large lesson (“Example Lesson: Dropping Cotton Balls” on page 4) in three 

high-school physics classes of varying ability. In two of the classes, we also did a short math-

and-mechanics problem (“The Elevator” on page 25) that also served as proof-of-concept that 

with our technology, high-school physics students could solve complex mechanics problems 

numerically. A third field-test candidate (“Copernicus” on page 23) proved so surprisingly diffi-

cult for experienced adults (despite what seems, on the surface, to be much simpler mathemat-

ics) that it needs additional redesign before we inflict it on students. 

5. We face three fundamental barriers: inadequate technology, lack of class time, and institutional 

inertia. So we must ensure that our materials make the technology an advantage: that students 

actually do and learn more science and more math, even though data analysis takes more time. 

You can read more about this in upcoming sections and in “Potential Commercial Applications” 

on page 26. And we found one unexpected “hook”: you can use mathematics—good data anal-

ysis—to get good results with cruder, that is, less expensive, equipment.

Finally, when we had prototype activities and could see our emerging philosophy of what makes a 

good math/science/technology/data integrated lesson, we looked back at the first objective—to iden-

tify topics—and noticed a curious thing: Seen in another light, all our activities are not just about their 

particular topics, but really about the nature of science itself. This is because, in integrating data and 

mathematics, we generate and test mathematical models. This aligns well with some current thinkers 

who feel that the nature of science is what’s most important for every citizen to learn. We will discuss all 

of these issues in greater detail.
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Research Findings and Project Activities

The Phase I award is for a feasibility study. In this case, the overarching question is whether we can 

develop materials for high-school and college that use technology—Fathom in particular—to inte-

grate mathematics into the science classroom more effectively through data. 

The short answer is “yes.” But before we continue with more detailed answers, let’s summarize one of 

the lessons we tested with students.

Example Lesson: Dropping Cotton Balls1

How long does it take a cotton ball to fall? It depends on many things—most importantly, how far you 

drop it. And cotton balls do not drop like stones, as air resistance plays a rôle here. 

At the beginning of the first session, we give the students a fake scientific paper describing a theory of 

cotton-ball falling. The theory (which is wrong) states that, due to air resistance, cotton balls fall a dis-

tance s in time t according to the formula  where k is a constant less than g, the acceler-

ation of gravity. This theory is plausible—it has cotton balls falling more slowly than rocks. And note 

that the theory is not about a single result, but rather about a function. 

Before they start their experimentation, we ask students to predict what will happen, and to do so 

explicitly: they make their data table in Fathom and the relevant graphs, and fill them in with predicted 

values before they take any measurements. (“You mean, make up numbers?” they asked. You bet.) This 

gives them a structure for their planning, and, when printed out, gives us an assessment tool.

At last we give the students measuring sticks, stopwatches, cotton balls, and Fathom, and set them to 

work. Figure 1 shows some data from the field test. On their own, the data don’t look very exciting, and 

you can’t tell whether the theory is any good or not. 

Figure 1. Sample cotton-ball data.

In Figure 2, however, we have superimposed a line and a curve. Both equations appear at the bottom of 

the graph; the constant k is a variable parameter controlled by the slider.

1. Luis Acuña, at ITCR in Costa Rica, inspired us in this activity. 
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Figure 2. The same data with a line and a curve superimposed. The line shows what may 
be terminal velocity; the curve—here, with a value of k=5.96—represents the 
theory. No value of k fits the data well.

The students then had to make a brief report—actually a Fathom document—summarizing whether 

they thought the theory was correct and what evidence they could cite for their decision. The data also 

gave rise to a discussion about terminal velocity, what it was, and why, physically, it might occur. 

The students went on (“More about Cotton Balls” on page 23) to try to improve the mathematical 

model for dropping cotton balls.

We enjoyed this activity because it exemplifies a lot of what we would like to see in lessons that inte-

grate mathematics and science effectively: the curves are not “curve-fitting” exercises, but theoretical 

predictions being compared to data; constants that emerge (e.g., the slope of the terminal line) have 

real physical meanings; students use algebra for a real purpose; and they do essentially what scientists 

do: they look at a plausible theory, design an experiment, take careful measurements, display the data, 

and find out that, despite the theory’s reasonableness, they can tell it’s wrong. And the only way to tell 

is by doing the math. 

This investigation also forces students to face many issues in that crack between mathematics and sci-

ence we alluded to earlier. For example:

• Usually, in a mechanics problem, time goes on the horizontal axis. Here, it seems to go on the 

vertical. Why?

• To get the theoretical curve, students must not only solve the equation for t; they must realize 

that they have to. 

• Measuring time is difficult. How do you account for reaction time? Students found that the 

shortest fall they could believably time was about half a meter.

• Some students solve for k and calculate a value of k for every drop. You can use this to invali-

date the theory, but what does that value mean in that context?
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• Is the spread between measurements at the same height due to measurement error or is it 

actual variation in the time of falling? Or does that matter?

• What does it mean to compare data to a function instead of to a constant?

Commentary.  Lets’ repeat ourselves: It is data analysis, not data, that injects mathematics into science. 

The natural venue for data analysis in science class is in a laboratory session. But traditionally, labora-

tory “experiments” are cookbook operations in which students collect data, usually to demonstrate 

some phenomenon. The “wet” work takes most of the time in the class period, so curricula usually com-

press data analysis into preordained calculations, written in the appropriate place in the lab notebook. 

The students do not decide what calculations to make; they do not compare their results to a mathe-

matical model; they do not consider why the data and model may not match; they do not improve the 

model; they seldom address issues of measurement error; and they certainly don’t have a chance to 

decide how to design the experiment in the first place.

Could students do these things? Of course they could—but we don’t usually ask them to. If the lesson is 

not to be a cookbook, it will be somewhat open-ended. But students like to be led, and most teachers 

don’t know how to handle open-ended lessons. Why not? One reason is the practical problem of time. 

Students need time to figure out how to measure something subtle or to grapple with comparing their 

data to mathematical models. And science teachers know that with students of varied abilities—and 

different levels of mathematical facility—a lesson can disintegrate when you ask students to pull that 

kind of mathematical load. At best, it will take a long time—an extra class session, perhaps. Do this very 

much, and you’ll never make it to Chapter 15 by the end of April.

What can we offer for this problem? Our field tests show that, with our technology and carefully-crafted 

materials, high-school students can actually do real data analysis in a reasonable amount of time. What 

makes the difference? Fathom is fast, powerful, and easy to use. Science students become Fathom-liter-

ate almost immediately: they enter data, calculate models, and perform other analyses. Equally impor-

tant are the tasks we have students do. Older curricula are written with the time limitation in mind, so 

real data analysis is absent or buried in an extension. But knowing that students will have the technol-

ogy, and will therefore have time, we can deliberately choose tasks where data analysis substantially 

enhances the science.

What is the connection to mathematics education? The original, presenting problem that motivated 

our Phase I proposal was the prototypical science-teacher complaint that the students don’t know the 

math—so science teachers have to teach the math “all over again.” More astute teachers recognize that 

the students may indeed know the math, but in a different guise. For example, variables in science are 

seldom x and y2, the coefficients are not likely to be small integers, and the old familiar functions are 

often translated to unfamiliar parts of the Cartesian plane. Technology helps the students with just this 

kind of difficulty. For example, Fathom plotted the data and the square-root function in Figure 2 reli-

ably and instantly. This still requires mathematical understanding—you have to express the function 

symbolically and enter the data—but it lets you make lots of mistakes, and fix them, without wasting 

hours and graph paper. The result? Students get to use mathematics in a meaningful context.

2. I myself have seen calculus students who could easily differentiate  with respect to x but were flum-

moxed when differentiating  with respect to r.

x2

r2
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Issues in Constructing Lessons
There are really three questions: what is the math, what is the science, and how do they interact with 

one another and with technology to make a better educational experience for the students?

The first two questions about math and science are interrelated. We focused our efforts during Phase I 

on physics and, to a lesser extent, chemistry. So the mathematics is different from if we had focused on 

biology or economics. Within physics, we focused on mechanics. The most obvious related mathemat-

ics has to do with functions—especially position as a function of time. However, we will see (e.g., in 

“Measurement” on page 10) that other areas of mathematics inevitably become important. We list a 

number of ways math is actually used in science (“How Scientists Use Mathematics” on page 12) as a 

way to help think about integrating the two disciplines.

Since we plan to use data analysis as part of this bridge, an obvious place to insinuate our ideas into the 

traditional high-school science curriculum is where the data are: in laboratory activities. So let’s discuss 

the lab and how we could use more mathematics there; then we’ll talk more about specific mathemat-

ics topics, and finally, we’ll consider a broader science topic than physics or chemistry: science itself.

The Math in Labs.  One way to make the lessons we want is to extend existing laboratory activities, 

making sure to do substantial data analysis that enhances understanding of the science. You could 

think of the cotton-balls activity above as an extension of a traditional free-fall lab for measuring the 

acceleration of gravity. What are those existing lessons like?

Labs in today’s schools run the gamut from dismal cookbook operations to brisk activities where stu-

dents efficiently assemble their equipment and take good measurements to illustrate phenomena they 

are studying in lecture. In a chemistry class that we observed, students were studying phase changes. 

They used temperature probes and CBL equipment to display how temperature changes with time on 

their graphing calculators as water in a test tube froze in an ice-and-salt slurry.

Such labs are successful by today’s standards. But at what? Certainly at illustrating a phenomenon, 

which is unquestionably important. 

But such lessons use little mathematics, and do very little data analysis to illuminate the science. In the 

phase-change lab, while students do get to see temperature as a function of time, they don’t do any-

thing with the function other than note the temperature where it’s flat (zero Celsius) and observe what 

was in the test tube while it was there (a mixture of ice and water) before the temperature went nega-

tive. Mathematically, they’re looking for a constant, not a function; one wonders how much they really 

needed the CBL technology: they could have looked at a thermometer once a minute and gotten the 

same result.

Let’s consider a lab that already integrates work with functions. 

We did not actually see this lab being done, but we read the students’ lab reports. It was a Galileo’s-

ramp activity, where students time metal balls rolling down inclined planes. They sketch parabolas 

through the distance-time points and derive an acceleration. 
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Figure 3. Galileo’s ramp data taken by project staff. As in the cotton-balls investigation, 
the slider a is a variable parameter controlling the parabola. Distance is in centi-
meters, time in seconds.

This is better—in the integration-of-mathematics dimension—than the phase-change lab because of 

the function connection. What could we do to improve it? Here are four ideas:

• Ask students to predict the time it would take to roll a previously-unmeasured distance. Have 

them derive their predictions two ways: from the graph and using algebra with the parameters 

they derived. Then, of course, they try it and see what happens.

• Use simple numerical modeling (See “Numerical Modeling” on page 11.) to model incremental 

changes in position and velocity under constant acceleration; this is one way to see why the 

curve is a parabola.

• With technology, have students use a variable parameter for an acceleration to generate the 

parabola (as shown in Figure 3), so that they can see dynamically what value fits the data best.

• Once students have a parabola, have them use Fathom to create residual plots and make con-

jectures about what effects (e.g., measurement error, friction) are unmodeled by the function. 

Returning to the phase change activity, what could we do to incorporate more mathematics? One 

investigation that meshes well with the chemistry curriculum is to ask how the temperature of the 

phase change—the freezing temperature—depends on the concentration of salt in the water. Suppose 

each group used a different salinity and could pool their data. Now we have a function we might be 

able to model—interestingly, not a function of time. It turns out that this very idea is already an exten-

sion to this lab as it is written. But students did not get to do it—because there was not enough time to 

do the data analysis. 

This is typical; it is not hard to come up with ideas for extending existing physics or chemistry lab activ-

ities to integrate more mathematics through better data analysis. And there are plenty of good 

resources, both for physics lab topics (e.g., Dickens 1995) and entire lab instructions (the bibliography in 

Dickens, or, for example, Appel et al., 2000). Parallel resources exist (e.g., Bond 2000) for chemistry and 

other sciences. 
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Sources of Data. To make lessons with data analysis, we need data. It is good to think about the source 

of the data for the lesson, to make sure that the data will be available, to give the teacher possible alter-

nate sources of data, and also to give students variety. Here are some that we have tried:

• Student-generated. This is the one where students take a measurement and type the data into 

the computer. It’s essential to give students ownership of the data and the process of collecting 

it. If you rely only on more automatic data collection, you risk making data a mysterious black 

box. “Example Lesson: Dropping Cotton Balls” on page 4 is uses this kind of data. 

• Static Web Data. There are lots of data on the Web, listed in tables just there for picking. Fathom 

is generally good at importing such data; more and more, schools have good web access. 

• Dynamic External Web data. Other web sites generate pages on the fly based on forms that you 

fill out. A good example is the Jupiter Ephemeris Generator3 at JPL, from which you can get 

positions of the Jovian satellites at any time. Erickson (2000) has several activities suitable for a 

science classroom that use these data. In addition, the KCP Technologies Census microdata 

project (Finzer 2001) has developed technology that could make retrieving such data even eas-

ier.

• Dynamic Internal Web data. By this we mean, data from a site expressly set up to be down-

loaded for a science lesson. This could be an internal site that collects data from all the stu-

dents; then it could serve the class data to individuals for analysis. 

• Special-purpose simulation. This could be a web applet or a stand-alone program that simu-

lates some phenomenon, generating data for import into Fathom. One prototype in this 

project is a solar system simulator we called Copernicus. We will discuss that below in “Coperni-

cus” on page 23.

• Fathom simulation. Fathom itself has extensive simulation capabilities; students can use 

Fathom to simulate many types of phenomena. Numerical models (see page 11) are simula-

tions, of course. One can also use randomness, for example to simulate measurement error.

• Probeware. Probes take measurements and squirt them through an interface into a computer. 

This is becoming increasingly popular (we are told) in science classrooms and is (we have seen 

for ourselves) an exciting way to get a lot of real data to analyze, often very quickly. We should 

note that while it is wonderful for every student or lab group to have a probe set-up, that’s not 

essential: if you’re short on equipment, take one set of data as a whole class, then share the 

resulting file for analysis. “The Elevator” on page 25 is an example in this document.

• Video. If you have video of a phenomenon, you can take measurements off the screen and 

enter them into Fathom. This is more and more practical for curriculum developers and individ-

ual teachers. And while we would rather have students actually experience as much as possi-

ble, video has several benefits: you can stop it to measure something that happens quickly; you 

can use it to see something that is too inaccessible or impractical for the class to see; and you 

can make the thing to be studied uniform across the class (that is, no one messes up the exper-

imental setup). “More about Cotton Balls” on page 23 has an example of what we mean here.

3. http://ringside.arc.nasa.gov/www/tools/ephem2_jup.html
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Measurement.  Let’s return from data to the mathematics, and look at an example of math “in the 

cracks.” When we had made some prototype activities that had the “feel” of what we had imagined, it 

was interesting to ask, “what mathematics do students use in these activities?” Of course, they used 

functions and proportion and algebra—mainstays of secondary math. But we realized they also used 

measurement in a big way.

Measurement is a major strand in most mathematics policy documents. Both the NCTM Curriculum and 

Evaluation Standards for School Mathematics (1989) and the more recent Principles and Standards of 

School Mathematics (2000) name it as one of their content standards. Of course, measurement is vital to 

the elementary years: students learn to use nonstandard and standard measurements, use tools cor-

rectly, understand that measurement is approximate, and use different units, both to express different 

ideas (e.g., square centimeters for area, centimeters for length) and different measurement systems 

(centimeters vs. inches). The NCTM (1989) measurement standard for grades 5–8 includes selecting 

appropriate units and tools, understanding derived measures and systems of measurement, and mak-

ing measurements and estimates to describe and compare phenomena4.

Read liberally, theirs is a pretty good list, especially for grade 8. But then it stops. Measurement does 

not appear as a standard in grades 9–12 in that (1989) document, though some concepts are folded 

into geometry. In the newer document (NCTM 2000), there is a measurement standard at grades 9–12, 

whose expectations read, in part:5

In grades 9–12 all students should—

• make decisions about units and scales that are appropriate for problem situations involv-

ing measurement. 

• analyze precision, accuracy, and approximate error in measurement situations; 

• understand and use formulas for the area, surface area, and volume of geometric figures, 

including cones, spheres, and cylinders; 

• apply informal concepts of successive approximation, upper and lower bounds, and limit in 

measurement situations; 

• use unit analysis to check measurement computations. 

Looking at the examples (or reading between the lines) we see that NCTM is talking, understandably, 

about measurement in the service of mathematics. And though science education benefits from these 

abilities (especially unit analysis), we need more:

• Analyzing approximate error goes beyond counting significant figures or even calculating the 

minimum and maximum possible values based on the precision of component measurements. 

Where appropriate, students should analyze repeated measurements to estimate their accu-

racy. They need not necessarily calculate a mean and its standard error (for example), but could 

at least base the estimate, however informally, on data.

• Indirect and derived measurements go beyond inaccessible distances, speed, and density. How 

would you measure g, the acceleration due to gravity? If you’re studying physics, you probably 

4. NCTM 1989, http://standards.nctm.org/Previous/CurrEvStds/5-8s13.htm
5. NCTM 2000, p. 320, http://standards.nctm.org/document/chapter7/meas.htm
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learned that . It is not trivial for students to realize that they can time something 

falling a known distance, do some algebra, and figure out the acceleration. Of course, repeated 

measurements will help them assess the accuracy of that observation.

• The NCTM Standards often reduce measuring quantities other than length to knowing how to 

use a formula. In fact, there are many practical problems involved in making accurate measure-

ments—for example, timing a falling object, finding the volume of something irregularly 

shaped, or counting the number of bacteria in a petri dish. 

It seems to us that these are all legitimate areas of study: it is worth class time to give students a chance 

to focus on them. If we do not, there is an equity problem: if these skills are prerequisites for success 

later on, and they are not taught in school, only those students who get them outside of school—pre-

sumably, advantaged ones— will succeed. 

Numerical Modeling. Once you have measured to get some data, you need to compare the data to 

something—often a mathematical model. The most obvious way to model in physical science is with 

explicit functions. For example, you may have a phenomenon that’s linear, so you fit a line to it. The 

slope has some physical meaning you extract. 

We also use functions to compare data to theory. But many phenomena have theories for which it’s 

hard to figure out the function. If some differential equation describes the situation, we may not know 

its solution. Even if we do, we would like to avoid bringing out such difficult mathematics—especially 

when easier math can solve our problem: we can solve many differential equations, numerically, as dif-

ference equations to an arbitrary degree of accuracy. 

This is an intriguing idea, but is it feasible that high-school students could do this? This seems an empir-

ical question, so we field-tested three activities—a brief introduction to numerical modeling in Fathom, 

a complicated investigation involving air resistance (“More about Cotton Balls” on page 23), and a less-

complicated but also less-structured problem (“The Elevator” on page 25)—all with considerable suc-

cess given the limited time we allocated to that part of the field test6. 

The most interesting bit, however, came during a debriefing. We asked the students if they had ever 

solved problems that way. No, they had not. What was it like? Easy. Makes sense. 

Then we pointed out that this was the end of the year when they knew physics already. Would it make 

any sense to learn physics using computations done this way—in little slices of time? The students 

replied, it would make more sense. They said it would have made it easier when they were first learning 

mechanics back in the Fall.

Aha: when you model mechanics numerically, you break time down into tiny increments, and repeat-

edly perform simple calculations on position, velocity, and acceleration. These yield small, step-by-step 

changes in those quantities which connect together to produce complex dynamical results. 

6. We should note that there are lots of different ways to do this kind of numerical modeling. Since the 
point is to help students understand science through accessible mathematics, we chose the simplest 
kind that would give us answers that were good enough. One can get more accurate results (for 
example, by integrating with trapezoids instead of rectangles) but we think that comes at a price in 
understandability. 

s 1 2⁄( )gt2=
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Figure 4. Numerical model of a falling rock. You can see the formulas in the Fathom 
“inspector” on the left. The arrow in the graph is pointing at the particular itera-
tion that the inspector displays. Students can also see a table of the data.

But within each tiny time increment, it’s easy: position is the old position plus the time step (here we 

have written it as time_s – prev(time_s) ) times the speed. Speed is the old speed plus the time step 

times the acceleration. It’s only the acceleration rule that changes: constant for gravity near the surface, 

proportional to position for a spring, and so forth. It only takes a tiny bit of algebra to understand a sin-

gle increment. 

And it’s accurate. If it’s not accurate enough, make the time step smaller. Here, of course, is an impor-

tant connection: if you keep making it smaller, you get calculus. Wouldn’t it be interesting—after all, we 

now have the computing power—to learn physics, numerically, when you first see algebra? How would 

that change how you look at the limit-taking in calculus when you finally approach that mountain?

How Scientists Use Mathematics. We have looked at measurement as an example of mathematics we 

may have missed, and numerical modeling as an example of math we have never tried to use with stu-

dents. Let’s step back a bit and ask more generally how scientists use mathematics.

The National Research Council (1995) summarizes the roles math and technology play in science:

A variety of technologies, such as hand tools, measuring instruments, and calculators, should 

be an integral component of scientific investigations. The use of computers for the collection, 

analysis, and display of data is also a part of this standard. Mathematics plays an essential role 

in all aspects of an inquiry. For example, measurement is used for posing questions, formulas 

are used for developing explanations, and charts and graphs are used for communicating 

results. (NRC, p. 175)

The Phase I proposal listed a number of specific areas where we use mathematics in science. It’s worth 

repeating them here, revised and enhanced through our work:

1. We use mathematics—or at least numbers and categories—to record data. And we use mathe-

matical ideas, e.g., the concept of a variable, to organize our thinking and plan just what data 

we will collect. 

2. We use mathematics (some would say computer science) to organize, clean, and transform our 

data, to get it ready to analyze. In one example (“The Bicycle Wheel” on page 21) we have to 

write a formula to tell when a spoke passes our sensor; or we might need to use relational for-

mulas to look up data in another table; or we might have to clean up or transform our data—for 
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example, to look at a change rather than an absolute amount as in “Evaporation” on page 20. 

We often forget that this “data preparation” is an important, often time-consuming part of data 

analysis (Gould 2001).

3. We use mathematics to make indirect measurements. This goes beyond trigonometry for inac-

cessible distances. For example, knowing a relationship among variables, we first solve for the 

one we want to determine; then we measure the others and calculate.

4. We use mathematical functions to model phenomena. To be sure, we can calculate using for-

mulas, e.g., to find the force of gravity on the surface of the moon. But real understanding 

comes when we think of the phenomenon functionally, e.g., to see how that force decreases as 

we get farther away. Recursively-defined functions and many types of simulations can be mod-

els as well. 

5. We use mathematics to describe departures from a model. Models typically oversimplify; often 

we draw the most interesting conclusions from the way data depart.

6. We use mathematics to cope with variability in data. This goes beyond insisting that every mea-

surement have a “plus-or-minus.” For example, we might calculate standard errors, or repeat-

edly simulate an inexact measurement process. More subtly: when we fit a model to data, the 

criteria we use to judge the fit involve variability. 

7. We use mathematics to decide if we can reject a hypothesis based on quantitative results. 

Often this requires only an informal comparison of data to model, but sometimes we need sta-

tistical inference in order to assess whether an observed effect could be due to chance. 

8. Mathematics—logic and statistics—also helps implement our experimental designs (e.g., to 

control variables both informally and using multiple regression or analysis of variance).

9. We use multiple mathematical representations—graphs, of course, but also tables, charts, and 

formulas—to help us understand the story the data tell and to communicate with others. The 

more representations we have at our disposal, the more flexible we are at exploratory data 

analysis and communication.

These will not all be present in every activity. But they are good examples of what sort of thing we 

should look for as we decide what to ask students to do. Mathematics permeates the doing of experi-

mental science. Too often, curriculum developers insulate students from that mathematics; instead, we 

can look for ways to put the student and the math together.

A Structure for Activities with Data
We adapted the Sonata for Data and Brain from Erickson (2000) for special use with science lessons. The 

main purpose of the Sonata form was to give teachers a structure for more open-ended problem solv-

ing. In addition, it prods students into making conjectures about what they will find when they eventu-

ally look at the data. Essentially, it consists of a single page with prompts to make a conjecture, describe 

the measurements, and reflect on differences between the conjecture and the results.

Our adaptation was to make the first, conjecturing phase more explicit. We ask students to invent data 

in Fathom before they take measurements. With these data, they set up their Fathom file, complete 
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with its analysis, displaying what they think will happen. Then it is easy to put in the real data (by mak-

ing a new column) and compare it to their predictions. Figure 5 shows some student-made graphs.

Figure 5. Graphs of one groups’s predictions (left) and actual measurements (right) for 
the cotton balls activity (“Example Lesson: Dropping Cotton Balls” on page 4).

In practice, this not only helps students think about the situation; it also helps students plan their mea-

surements, generally get organized, and think about data analysis. We hope it will help minimize the 

common situation in open-ended investigations that students take a lot of data and find out at the end 

that they didn’t measure what they really needed to know.

We are indebted to Gerhard Salinger of NSF for a comment (“Not only should students do data analysis; 

they should do the analysis before they have the data.”) which reinforced our intention to try this. 

Broader Issues
What are some overall directions in curriculum development, and in science curriculum in particular? 

At this writing, American educational reform is characterized by “tough standards” and accountability, 

fueled by frequent testing, particularly in mathematics and reading. This trend seems unfriendly to 

innovation in science education, but two factors mitigate in our favor: first, our innovations all involve 

technology, which people generally want more of; second, the moderating influences of more progres-

sive education will inevitably return. One way to look at curriculum development now is that it is pre-

pares us for the next swing of the pendulum. 

A good example of current progressive thinking is in Understanding by Design (Wiggins and McTighe, 

1998). They are disturbed that much current curriculum development seems to be about covering a list 

of topics—often, these days, an extensive list in some set of standards. 

As an alternative, Wiggins and McTighe suggest what they call “Backwards Design.” In their view, rather 

than a list of topics, we should set our sights on “Enduring Understandings”—the biggest ideas. These 

are more central than the items on a list of what it is important for students to know and be able to do: 

they should be the nuggets that have “enduring value beyond the classroom,” and “reside at the heart 

of the discipline” (Wigging & McTighe, 1998, pp. 10–11). For example, in physics, conservation of 

energy is such a nugget; the formulas for kinetic and potential energy are not. Once we have identified 

these enduring understandings, before we start making lessons, we figure out what evidence we 
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would need to be sure that students have accomplished what we have in mind (that is, we should 

attend to assessment early). Only then do we write the lessons themselves.

The key is identifying the enduring understandings. Where would we find these things? Fortunately, in 

science, the people at Project 2061 have been figuring them out for some time. Since Science for All 

Americans (AAAS, 1990), they have developed a compelling set of benchmarks and associated materi-

als to help curriculum developers do their jobs coherently and productively.

Project 2061 is refreshingly brave in their choice of benchmarks. Rather than falling prey to science 

educators’ particular tendency to put everything in, they ruthlessly keep the inessential out. Their 

benchmarks are models of intelligible generality rather than a list of disconnected specifics. 

A Fly in the Ointment, and How to Swat It. The one area where we might differ from the benchmarks 

themselves in is the overall difficulty of the materials we would produce. Project 2061 explicitly intends 

the benchmarks to be common science-for-all goals. They state:

Benchmarks specifies thresholds rather than average or advanced performance. It describes 

levels of understanding and ability that all students are expected to reach on the way to 

becoming science-literate. (AAAS 1993, page xiii)

The individual benchmarks echo this sentiment, for example, when discussing symbolic relationships:

In Project 2061, we don’t expect students to remember formulas for accelerations or parallel 

circuits or mass action; nor do we expect them to be able to perform algebraic manipulations 

or solve simultaneous equations. We do expect them to acquire an understanding of propor-

tionality, the ability to read an algebraic formula, and to develop the ability to relate the shape 

of a graph to its implications for how some aspect of the world behaves. (AAAS, 1993, page 216)

In the face of such a statement, suggestions we will make—for example, that we could introduce 

numerical modeling in high school for teaching mechanics—may seem extravagant, and run foolishly 

counter to a document we so respect. However:

• Even though we are trying to make more quantitative science accessible to more students, 

what we produce may be “beyond the benchmark,” that is, still not for all students.

• Our market includes college-level courses, including teacher preparation, so it is natural that 

some of our work would be beyond common goals for high-school students.

• In addition, since the way we use technology specifically helps students integrate their under-

standings of mathematics and science in new ways—ways that are impossible without the 

technology—our material may be more accessible than the Benchmarks might suggest.

What the Benchmarks Do for Us. The Benchmarks can help guide the project even if our alignment 

with them is not perfect. For one thing, their very ruthlessness can help us decide among different can-

didate activities or stances; for example, they remind us to concentrate on understanding symbolic 

descriptions rather than manipulating them. The 2061 Benchmarks are remarkable for two more things: 

• They include mathematics and the social sciences within the embrace of their science bench-

marks, and

• They give special attention to the process of science in general in a benchmark called the 

“Nature of Science.”
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That they even mention mathematics and how it integrates with science is unusual; many “standards” 

documents7 reinforce the view that the disciplines of science and mathematics are, and perhaps 

should be, separate—and as incommunicado as their corresponding departments.

The social science connection is even more astounding, and suggests new directions for work outlined 

in Finzer (2001) and in “What About Social Science?” on page 28.

Finally, their focus on the nature of science lends legitimacy to its position as an object of study in its 

own right. We have long noticed that statistics and mathematical modeling “feel” like science. They 

revolve around questions we ask of the universe, and ask us to design experiments and plan observa-

tions to answer those questions—fitting the results into an emerging framework of understanding. The 

mathematics curriculum generally does not encompass much of the Nature of Science benchmark. 

And science curricula often start with a chapter or less on the scientific method, and leave it at that. 

Making activities that real teachers will use, effective activities that have authentic nature-of-science 

learning objectives, would be a significant achievement. Kurth (2001) has already noted that our proto-

type activities are strong in that area. But how shall we make the activities so teachers will use them? 

Time is the problem again; we discuss ideas for solutions in “Where Does the Nature of Science Fit In?” 

on page 28. 

Software Enhancements

The Timer. The first and simplest way KCP Tech enhanced Fathom was to develop a prototype for a 

software timer based on an earlier, web-based prototype from Epistemological Engineering. This is no 

technical miracle, but it is enormously convenient that the timer is integrated with the software, so that 

a keypress creates a Fathom case with an associated time code. 

Students use the timer, for example, to record times in mechanics experiments. They can also use it to 

record times of events in other investigations. For example, students could use it to record times and 

categories of cars passing on a street.

This particular use suggests more a statistical study than a math/science integration. But the very exist-

ence of the timer was a proof-of-concept: could we use the “derived collections” infrastructure in 

Fathom to act as a portal for getting other data more directly into Fathom. Since the timer, KCP Tech 

has used some of the same ideas to create the IPUMS Census microdata interface (Finzer 2001) and the 

probeware interface, below. 

Probeware Interface. Thanks to a generous contribution by Vernier Software and Technologies, we 

received a LabPro Interface and three probes with which to test our ideas. Using their technical docu-

mentation, KCP Tech implemented a prototype interface for two of the probes using the USB port on 

the Macintosh. “The Bicycle Wheel” on page 21 and “The Elevator” on page 25 are dramatic examples.

7.  California’s science standards, for example, mention mathematics once in the introduction and only 
twice in the body, in this eight-grade statement: “[Students will] apply simple mathematic [sic] rela-
tionships to determine a missing quantity in a mathematic expression, given the two remaining terms 
(including speed = distance/time, density = mass/volume, force = pressure * area, volume = area * 
height)” (CDE 2000, page 30) To be sure, they have many more statements that imply knowledge of 
mathematics (e.g., “Students know how to solve problems by using the ideal gas law in the form 
PV=nRT.” (page 38)) but these are qualitatively different from the Benchmarks’ deeper requirement.
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Plotting Multiple Series. We also asked KCP Tech to teach Fathom how to plot more than one 

attribute on an axis. That is, until now, if you had cases that included, say, the time of a measurement, 

the voltage at one place in a circuit, and the voltage at another place in the same circuit, you had to 

graph those separately. Now, holding down a special key (this is a stand-in for a better interface to 

come) you can drag the second attribute to an axis; Fathom plots the two data series in different sym-

bols and displays a legend at the bottom of the graph. You can see an example in Figure 6 on page 21.

This feature is particularly important in our ideas for curriculum when you consider plotting predicted 

values and actual measurements on the same graph. 

Plug-In Architecture. We contributed part of the funds to create a “plug-in architecture” for Fathom. 

When fully implemented, we will be able to write small plug-in files. Users will drop these into a special 

folder on their disk to give Fathom new functionality. We have tested this with mathematical functions 

students can use to define measures and new attribute values. 

Thus we will be able to sell small files that enhance users’ copies of Fathom. This is good for us—it gives 

us another product to sell—but is also good for users, especially beginners. That is, when you start 

using Fathom, you will not be overwhelmed with possibilities. As you become more adept and have 

additional needs, you can add functionality.

For example, most math teachers will not need the probeware interface or many of the statistical distri-

butions. A science teacher will need the probeware, but many fewer functions. On the other hand, that 

same science teacher may need additional functions, which she can buy.

Future Software Enhancements
We were of course unable to implement everything we would like to have done during the short 

Phase I period. However, we identified several important candidates for future work. We could imple-

ment many of these as plug-ins, as described above.

Time-series functions. Fathom has few functions especially designed for dealing with time series. Sci-

ence activities could use them frequently. So we plan to implement functions ranging from control 

functions to smoothing to FFTs. 

New Time-Series Oriented Derived Collections. Fathom implements samples (and other things) as 

derived collections. If we have time-series data where we need a new function that does not conserve 

the number of cases, we could use a derived collection. Some FFTs would be like this. But more impor-

tant, we could implement “trigger” collections. Consider time-series data from an EKG (Vernier makes 

this probe, by the way). You may collect data 50 times a second, but want a case for every heartbeat. 

You would write a formula that determines when a heartbeat takes place; Fathom would make a new 

case—with whatever measures you specify—when the formula fires.

Date and Time Data Types. Fathom currently recognizes the strings “10:30” and “4 July 1776” only as 

strings. They have no numerical meaning at all. Yet a lot of data (especially from the Web) have time 

markings like those as values for the independent variable. 

While there are plenty of canned routines to convert these data types, the interface question is a mine-

field, and needs careful design work. 
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Units. Measurements generally have units attached to them, and Fathom should honor that. A too-

simple solution is to tag every attribute with a unit that Fathom would display on the graph axes. We 

should do unit algebra, so that when you multiply speed by time you actually get distance; we could 

also convert any “odd” units automatically. 

But while we have the computational engines to do all that, we need a good design. How do users 

specify default units? What about overriding those defaults? Are units always present or are they a pref-

erence—or a plug-in?

Better Plot Overlays. The current “multiple series” solution (above) is a huge improvement, but it 

needs more work. In particular, it is impossible to plot data from more than one collection on the same 

graph. While this might be confusing in general, in our science materials, it would be helpful to plot 

data from a model on the same graph as data from an experiment, or to plot results from multiple 

experiments on the same graph. We imagine something like dragging one graph on top of another 

and having them readjust their axis bounds (and converting units) to fit together. Figure 10 on page 24 

has an example of what we had in mind; the author used a complicated work-around to get the right 

behavior in the current version.

Plot “Adornments”. Science cries out for a wide variety of elements on the graphs. A good example is 

error bars. KCP Technologies have long dreamed of implementing “user-constructed graphs,” where 

users could specify screen objects that depend on calculated values. This is one solution to the error-

bar problem. But in looking at our real needs based on the work in this grant, we have realized that a 

more modest, less general undertaking, coupled with better overlays, may be sufficient for the great 

majority of users’ needs. 

User-Created ControlText. Fathom has several places that use what we call ControlText—text with 

special numbers in it (they’re blue at the moment) that do two things at once: they change when 

underlying values change, and you can edit them to change the underlying values. We use it, for exam-

ple, as one way to set axis bounds. ControlText’s dual-purpose nature is great for the user interface—it 

means you don’t need a separate mode for changing these numbers, and yet you can see their values. 

But users cannot create ControlText of their own. We’d like to make that possible. If they could, users 

could write reports in Fathom with statements like “The mean height of the tomato plants in the sun 

after 21 days was 17.3 cm. In the shade, the mean height was 11.7,” except that the numbers would 

actually be calculated internally, so that the text in the report would change as you added data. Here, 

again, the challenge is to design the interface. How does the user specify what gets inserted?

“2061” Curves. The Benchmarks (AAAS, 1993) point out that it is more important to be able to think of 

functions in terms of their basic shapes than to know all about their formulas. So to make activities that 

are still quantitative but less symbol-dependent, it would be good to include some general-shape 

curve-drawing tools, analogous to Fathom’s existing “movable line.” Students could use these to “fit” 

existing data or to make explicit predictions about data they will take in the future.

Networked Sharing of Data. We effectively distributed files using the computers’ own capabilities 

during the field test, but it would be useful for Fathom itself to have networking capabilities so that dif-

ferent groups of students could contribute to a class data set in real time. 
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Field Testing at Berkeley High School
While we had hoped to try activities with students earlier in the year, we did not find a suitable class-

room and teacher until May 2001. We were, however, extraordinarily fortunate to find Richard White, 

who teaches physics at Berkeley High School in Berkeley, California. He invited us to try activities for a 

total of fifteen class-hours—five hours in each of three different sections of physics. 

Two of the sections were advanced placement (AP) physics; the other was “regular” physics for college-

intending students. Almost all of the students were seniors. Each session was a double period totalling 

about 100 minutes. One of the AP classes was exceptionally capable. 

That the students were, in general, so experienced, was a mixed blessing, overall positive. We do want 

to serve students of a wider range of ages and capabilities, and we would have liked to work with stu-

dents in other disciplines. Still, this is a feasibility study. Our prototype activities are in their roughest 

form, so these students can give them the best chance of working. 

That this all took place in May was mixed as well: we could assume that their school physics was well in 

hand. Interestingly, the AP students, while enormously skilled as textbook problem-solvers—they had 

taken the AP exam already—had done fewer labs than the “regular” class. It was therefore interesting 

to see where our data-oriented, more open-ended approach was new to them. Also, all of these young 

men and women were in their last few weeks of high school, and while we saw good attendance and 

solid work, some minds were clearly elsewhere.

After a brief introduction to Fathom from Data in Depth (Erickson 2000), we did an extended activity 

(“Example Lesson: Dropping Cotton Balls” on page 4) and followed it with as many extensions as we 

could fit in. We did the modeling extension with all classes (the first part of “More about Cotton Balls” 

on page 23) and a shorter problem (“The Elevator” on page 25) with the two AP sections. This last was 

largely to test the feasibility of approaching mechanics numerically as described in “Numerical Model-

ing” on page 11.

Computer Access. Having computers available is always a problem for curriculum development like 

ours. It’s an equity issue as well; less well-off or more constrained schools either haven’t enough suffi-

ciently powerful computers or have them locked away where they can only be used easily for word 

processing.

Fortunately, this seems to be changing. Berkeley High—not a rich school, and with an economically 

diverse student population—is not alone in starting to invest in mobile computer labs. We were lucky 

enough to get one for the whole time we were visiting. 

Ours was a cart that plugs into the wall. A printer sits atop the cart, as does an AirPort (Apple’s wireless 

network) base station. In the cart are fifteen iBook computers with AirPort cards. We installed Fathom 

on the computers (25 minutes) and were ready to go. With the wireless network, students could print 

on the printer; and if we had plugged the ethernet cable from the hub into the RJ-45 port on the wall, 

the students would have had Internet access. We left it unplugged. The largest class was almost 30 stu-

dents, so they worked in pairs. The smallest class was eight so they worked alone. We preferred the bus-

tling feel of the shared computers, though there’s no way to tell if it was the sharing that made their 

work better.
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Assessment. This was a field test simply to see if the activities would be comprehensible. Nevertheless, 

conscious of Wiggins and McTighe’s (1998) lamentations over curriculum designed without assess-

ment in mind, we were attentive to assessment issues. There are two things that merit special mention:

• Printing is important. In “Example Lesson: Dropping Cotton Balls” on page 4, we asked students 

to make explicit guesses as to what the data would be like. To force them actually to do this 

step, and take the risk of predicting, we asked them to print their predictions and turn them in. 

This worked as expected in its rôle as a motivational ploy and as an advance organizer. But it 

gave us unexpected assessment fodder: in the middle of the activity, we had evidence on 

paper of the level of students’ understanding and intuition about the situation. 

For example, many AP students but few “regular” students gave us predictions that eventually 

straightened out to show a terminal velocity. No students predicted data that showed any vari-

ation from drop to drop. And in both classes, many students produced data points that were 

well outside the practical range for real data collection (e.g., dropping the cotton ball 

20 meters). Over the course of the year, we would expect this latter to improve.

• Screen size is important. Walking around the class, with real computer screens—as opposed to 

the small screens of graphing calculators—you can tell at a glance what the students are up to 

and who needs assistance. This helps teachers make moment-to-moment instructional deci-

sions and evaluate individual students’ progress or the overall effectiveness of a lesson.

Examples of Lessons and Problems 

Here are more extended descriptions of some of the lessons and problems we have referred to else-

where.

Evaporation
We designed this lesson before we had access to classrooms, so we did it on our own. Teachers said 

they thought it was completely plausible, however, for a real classroom. It’s also worth describing 

because of its apparent simplicity—and the data analysis complications it generates.

We put 100 mL of water into each of four glass containers. The containers were of different diameters, 

ranging from about 10 cm (a peanut-butter jar) to about 2.5 cm (a tall graduated cylinder). Then, from 

time to time over the course of several weeks, we weighed each of the containers on an electronic scale 

that was accurate to 2 grams, and entered the weights into Fathom. We also recorded the temperature 

in degrees Celsius.

We made a conjecture: The wider containers would evaporate faster, possibly in proportion to the sur-

face area; in addition, we might be able to see faster evaporation on hotter days. We imagined that 

humidity would play a role, but had no hygrometer.

The raw data are date, time, temperature, and weight in grams. But the weights themselves are not 

what we want. Instead, we want the total amount of water that has evaporated. So we need a new 

attribute, which we calculate as the difference between the current weight and the first weight in the 

series. The independent variable, time, is a problem as well. We need to combine the date and time into 

a single “time” variable, which we decided would be measured in decimal days. 
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These two calculations are simple if you’re experienced, but enormously subtle if you aren’t used to 

dealing with data. Students will need to be led though such calculations at first, and then, later, given a 

chance to decide for themselves what attributes need what kinds of transformations, and then to make 

those without hints or suggestions. This is an excellent example of the “simpler” mathematics we might 

realistically expect most students to be able to do.

Figure 6. Evaporation data, with a “movable line” approximating the first (largest-diame-
ter) series. The equation at the bottom shows that it lost water at a rate of about 
6 grams per day. Note that this shows the new feature of displaying more than 
one series on a graph.

Figure 6 shows a graph of these transformed data; the line shows the evaporation rate for the largest-

diameter container (labeled “A”, so the variable denoting how much it has lost is Aloss). This is another 

piece of simple mathematics that—we know from experience—many students need practice with. The 

slope of the line in the figure is 6.28. What does that mean? Students may know all about slopes in 

math class, but to really understand that this is the evaporation rate in grams per day takes more expe-

rience—and it’s useful math to be able to do.

Further analysis (not shown) suggests that the slopes of the lines are more-or-less proportional to sur-

face area. And indeed, the temperature is a bit lower in the last few days of this period, so we think the 

apparent decline in slope is real.

This could have been a simple, cookbook lab: measure this, subtract that, calculate this or that slope, 

write it in the space. But this is a good example, we think, of an activity that could be more open-ended. 

With the help of the technology, middle-of-the-class high-school chemistry or biology students can 

grapple with some of the data-analysis issues this situation presents and, with help from the teacher 

and their groups, succeed.

The Bicycle Wheel
This is another investigation we did not use with students, but a good example of integrating interest-

ing mathematics—this time, using probeware to get the data.
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Figure 7. Light shining though bicycle spokes. Time is in seconds, illumination in lux. There 
is one data point every 0.0004 seconds, i.e., 2500 Hz. Notice the oscillation in the 
background. Also, at 2.82 seconds, the shadow of the valve.

We inverted a bicycle so that the front wheel ran free, then set up a flashlight on one side and a Vernier 

light probe on the other. The idea was to see whether we could detect the shadows of the spokes as 

they went past (we could, as in Figure 7) and ultimately, to use Fathom to predict when the wheel 

would stop. 

At this point, we used a formula in Fathom to detect the spokes, and created a new data collection, 

where each case was a spoke instead of a single observation of light intensity. Then we further calcu-

lated, for each spoke, the time since the previous spoke. The left side of Figure 8 shows how that delay, 

dt, increases with time. The right shows how its reciprocal (divided by 32, the number of spokes), called 

cps, decreases with time. An important question for students is which you would rather use to predict 

when the wheel will stop.

Figure 8. At left, the time between the spokes as a function of time. At right, those quanti-
ties converted to cycles per second, also as a function of time. We also show the 
least-squares regression line for each graph.

This situation confronts students with important mathematics. Just to get the raw data into a form they 

can use, they have to detect the spokes, collect these spokes into a new data set8, convert dt into cps, 

and somehow (here we use a Fathom “filter”) eliminate the too-small dt values that correspond to the 

8. This will be easier with new features; see “New Time-Series Oriented Derived Collections” on page 17.
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valve. But foremost, once they have made these graphs, students have to understand what the graphs 

mean—what the variables signify. But there are also the questions of why both graphs are so linear, 

how far we would have to go in the left-hand graph to detect its curvature, and finally, back in the sci-

ence domain, whether the speed really decreases linearly—that is, is it right to extrapolate?—and if 

not, how the data will depart from the linear model.

Copernicus
We designed this lesson to use a stand-alone program as a source of data. Copernicus is a solar-system 

simulator. You are on a planet with a simulated night sky in which you see stars and other simulated 

planets. You control the time; as the days pass, you can distinguish planets from stars because the plan-

ets move against the stellar background. The first task is to do just that. The second is to use the motion 

of a superior planet (one farther from the sun, like Mars to us; and it’s easy to find) to determine as 

much as you can about the length of its year.

Figure 9. The Copernicus window (“Mars” is in the middle of both the sky and telescope 
fields) and an example of Copernicus data—in this case, longitude with respect 
to time—in Fathom. A Fathom text object describes the relevant calculations for 
determining the length of Mars’s year.

When you click on an object, you measure its position in celestial latitude and longitude9 and its 

brightness. You can export these data (in this prototype, by cutting and pasting) into Fathom. An exam-

ple appears in Figure 9. Notice how you can see retrograde motion—where celestial longitude 

decreases—and that students would have to cope with longitudes that suddenly jump from plus 180 

to minus 180 degrees. 

The lesson succeeds as a proof of concept in its use of the technology, although the situation proved 

too conceptually difficult (much to our surprise) for the experienced adults who tested it.

More about Cotton Balls
We asked students what sort of model they would propose to explain the falling cotton balls; generally 

they suggested using the parabolic, theoretical model at first, “transitioning” to a linear model as the 

cotton ball reached terminal velocity. In asking students why there should be a terminal velocity, some 

9. We used these rather than right ascension and declination, as the terms are more familiar.
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rightly came up with the explanation that, since air resistance increases with speed, the force of air 

resistance would eventually equal that of gravity, resulting in constant speed.

At this point, we experimented with having the students use Euler’s method to make a numerical 

model that incorporates air resistance and measurement error. 

Figure 10. At left, the same cotton ball data as in Figure 1 on page 4, this time with simu-
lated model data superimposed (with some error as well). The slider again con-
trols the curve. On the right, you can see model values for the velocity as a 
function of time, showing how it approaches a terminal velocity.

This model works remarkably well, but we were not able to distinguish between models where air 

resistance is proportional to velocity and those where it’s proportional to its square.

There is still little data at the beginning of the fall because of the problem of timing well, so we decided 

to experiment further after the field tests. We made a short QuickTime video of a cotton ball falling a lit-

tle over a meter. Since we could look at it frame by frame, we could get consistent data every 1/30 of a 

second. Figure 11 shows data acquired this way.
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Figure 11. The height of a cotton ball as a function of time, measured from a video. The top 
graph shows the height as measured and according to a numerical model. Since 
they are nearly coincident, we also show, below, the residuals, where you can see 
a pattern telling us that the model, while good, still needs improvement. At 
right, part of a frame from the video. Horizontal lines are every 10 cm.

There are two points to showing this example here:

• Video—which teachers can create digitally or that we put on the same CD as the software—is a 

good medium for simple data collection. It’s especially appropriate in a case like this when you 

need to stop the action to see what is happening.

• We can make a remarkably good model, using really rather crude equipment and measure-

ments, for a very complex situation. Without the technology, we would never have considered 

posing such a problem because the mathematics was too complex. With Fathom, the numerical 

modeling is relatively easy—and it works.

The Elevator
We implemented this idea not as a whole activity but as a single problem—as you might find in a prob-

lem set at the end of an unusual chapter on mechanics. We collected the data using a Vernier force 

probe and then gave the computer file to the students for analysis. (This is a good example of a situa-

tion where it was not practical for students to collect the data themselves.)

We hung a force probe from a laboratory stand, and hung a coffee mug from the probe. At rest, the 

probe reports the weight of the mug. Then we set the whole apparatus in an elevator and, collecting 50 

data points per second for 20 seconds, pressed the button and traveled two floors. Figure 12 shows the 

thousand points of data. The task is to figure out which direction the elevator moved—and how far.
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Figure 12. Force registered on a force probe from a hanging mug during a two-floor eleva-
tor ride. Time is in seconds, force in Newtons.

First you need to imagine elevator rides, and compare them to the data, to determine which way the 

elevator went. The cup got heavier at the beginning and lighter at the end; it went up.

To figure out how far, however, you have to set up the data for analysis, for example, by converting the 

force measurement to acceleration. After that, use Euler’s method to integrate the acceleration, twice, 

to get a distance. Interestingly, it’s hard to determine the mass of the cup exactly. So you make it a vari-

able parameter, (a slider in Fathom) and adjust it. The key boundary condition to meet is that the eleva-

tor is at rest (velocity is zero) at the end. With that, we determined a height that was within 2 cm of 

what we got by extending a long measuring tape over the balcony between the floors. 

If this is not a fluke, it speaks volumes about the power of the probe when used in conjunction with 

good software. We should also note that the great learning potential comes in having the students set 

up the numerical work rather than having an automatic integration function as a feature in the pro-

gram.

Potential Commercial Applications 

We expect to submit a Phase II proposal in January 2002 to continue this work. We have developed, 

with field-test teachers and advisors, a number of ideas about potentially viable products that would 

build on our results. 

Replacement Labs for Physics. A book of the ten to twenty-four most commonly used physics or 

chemistry labs—the old chestnuts—extended and updated to use appropriate technology and to 

have a substantial data-analysis component. Our field-test physics teacher, Richard White, is tentatively 

interested in collaborating, as is his colleague, Aaron Glimme. Such a book would most likely include a 

CD with the software, plug-ins, blank worksheets, sample data from real students, and videos of the 

labs in case teachers could not use real equipment.

Such a book for physics might include traditional labs like these:

• Free-fall or Galileo’s ramp: acceleration of gravity.

• Pendulum. What affects the period, and how?

• Starting and sliding friction. [Lack of ] conservation of energy.
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• Rotation, torque, moment of inertia, angular momentum. 

• Inferring Ohm’s Law.

• Parallel circuits (even though the Benchmarks don’t like them).

• Optics. Distances of image and object from lens.

• Springs. Figure out .

• Strength of materials: deforming a beam, breaking a bridge.

• Ripple tank interference/diffraction.

• Refraction: discover Snell’s law.

• Air and water pressure, e.g., water squirting out of a column: how far does it squirt?

• Surface/volume relationships. Melting ice cubes of different sizes and shapes.

We would choose these because they are the ones teachers are doing anyway—so using these would 

be a minimal disturbance to the routine. It would be good, however—either in this book or in a com-

panion volume—to suggest labs (such as the cotton balls or the bicycle wheel) that we could not do 

well without the technology.

Playing Experimentalist. The format of the cotton-balls lab—where the students received a fake the-

oretical paper that they were to support or refute with experimental evidence—is extremely attractive. 

One could imagine a book of these one-page “papers” with hints and suggestions for how to proceed. 

This would of course be more open-ended, and engage students more in the nature of science as well 

as their discipline-specific content. 

Data Analysis Problems. We have been speaking, in this report, as if students encounter data only in 

their labs. But that’s not necessarily so. We could publish a resource book, with CD, of problems for data 

analysis in physics or chemistry They would focus on skills that run from cleaning the data all the way to 

presenting the final report—covering many of the mathematical issues we listed above in “How Scien-

tists Use Mathematics” on page 12. In this report, “The Bicycle Wheel” on page 21, “The Elevator” on 

page 25, and the video section of “More about Cotton Balls” on page 23 are good candidates.

Sciences Other Than Physics and Chemistry
Fields such as biology or earth science will have different mathematical emphases, relying less on non-

linear functions and more on proportion and statistics. There may be other areas of mathematics that 

are “in the cracks” between mathematics and these sciences in the same way that measurement is, that 

is, mathematics essential for success but not actually present in either syllabus. One candidate is what 

we might call “demographic thinking”—the way we can predict how a distribution evolves. Technology 

like Fathom is effective in coming to grips with topics like this, especially using its built-in simulation 

capabilities—which we have hardly touched in our applications to physics.

Still, the principles would remain the same, and the list “How Scientists Use Mathematics” on page 12 

should still apply. Various advisors have suggested that a series of the “chestnut lab” books would be 

attractive; the “Experimentalist” and “Data Analysis Problem” books would work as well.

F kx–=
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It would make sense to do these for Physics first, as we look for suitable like-minded collaborators with 

expertise in other areas to work with us on further products.

What About Social Science?
We originally intended integrate mathematics with just the natural sciences. But could we expand our 

ideas for into the social sciences as well? Beth Wellman, Technology Director for the California History 

Project, confirmed our suspicion that, while history teachers are beginning to use technology, they 

don’t integrate it with mathematics.

Besides, what math is there in history? Quite a bit, it turns out. The Benchmarks (AAAS, 1993) include an 

entire chapter on “Human Society.” Their theme of “Group Behavior” appears especially well-suited for 

data analysis and Fathom. It also corresponds with research in social psychology about the role of criti-

cal thinking in anti-bias education. It was clear to Allport (1954) that prejudice depends in part on 

faulty thinking. In particular, when people form stereotypes, they fail to realize

an almost universal principle in respect to overlapping group differences: the differences 

within the same group are greater…than the differences between the averages of the two 

groups. (Allport 1954, page 102.)

And there’s the clue to the math: differences (and similarities) between groups. This is a central issue in 

statistics—comparing within-group and between-group differences, and making valid inferences 

about those differences from data. 

Can this really help in anti-bias education? It seems so: based on 1975 research, Glock et al. identified 

“cognitive sophistication,” a disposition for critical thinking, as a key factor in avoiding prejudice.They 

recommended three specific kinds of instruction to combat adolescent prejudice. Two of these relate 

to the understanding of group differences: 1) instruction in the logic of inference, “so that youngsters 

can come to recognize when group differences are being falsely accounted for...” and 2) instruction to 

make it clear that you cannot infer individual differences from aggregate properties of groups.

This represents an intriguing possibility for the future of Fathom in schools: a chance to help teachers 

make mathematics more personally useful and meaningful to students, as well as a chance to open up 

new markets.

Where Does the Nature of Science Fit In?
In a word, everywhere. It may be that our attention to nature-of-science issues distinguishes our work 

from that of potential competitors. We are good at choosing the authentically scientific alternative 

from among myriad curricular possibilities. 

That said, we envision several ways this can happen:

• Through thoughtful discussion questions and extensions in single activities, possibly flagged 

as focused on the nature of science;

• Through giving teachers more student-centered alternatives to traditional labs;

• Through the creation of entire units that focus on the nature of science as their main content.
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This last possibility is the most exciting but the one least likely to sell in the current climate. Neverthe-

less, that might be changing as colleges develop quantitative literacy courses that might be fertile 

homes for such an idea.
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