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In this paper we look at student work in a Data Game called “Markov,” designed to give students 
experience with conditional probability. The online game records all student moves and strategy-
making. We look at these “rich learning analytics” to see what patterns of student behavior we can 
see and what types of conclusions we might draw. We will see that these data are a rich and 
intriguing window into student thinking and behavior, with implications for both instruction and 
research.

INTRODUCTION
We never know what really happens in the classroom. We see the results of student  work 

but not  the working. Even when students are doing an activity, and we circulate, eyes and ears wide 
open, we catch only snatches of student talk and glimpses of their tentative scribblings. 

We may get  video or audio recordings of individual, group, or class work—always 
instructive to us instructors. And if we’re doing serious research, a painful period may follow, an 
eon of transcribing the media and developing coding systems so we can categorize the events, 
analyzing them for glimmers of learning and clues to student  understanding. This kind of work is 
essential for research, but utterly impractical for day-to-day classroom decision-making.

This paper describes a middle ground available when students are doing an on-line activity: 
using “rich learning analytics.” The basic idea is not new. Even Khan Academy has a “teacher 
dashboard” that  tells instructors which exercises students have completed. But it does not  tell them 
how the students did their work. 

This paper describes the detailed data available for the game Markov, from Data Games 
(Finzer 2012). We will explore data from a class session to learn how students played the game and 
try to infer what they understand about conditional probability. 

MARKOV, THE GAME
To understand the data, you need to know about the game. The very best  way to learn it is 

to play it. Go to http://goo.gl/K7joio to play the game (press “login as guest” for access). You can 
also watch short  videos about it  at  http://goo.gl/orW0wO (student introduction); http://goo.gl/
IU9kIU (student advanced); and http://goo.gl/scuUgt (for the teacher).  

In the game, you play a sequence of rounds of “rock-paper-scissors” (R P S) against an evil 
genius, Dr Markov. A dog, Madeline, sits on an elevator. Whenever Markov wins a round of the 
game, the elevator descends towards his basement laboratory. When you win a round, the elevator 
rises towards the surface—and freedom. 

And the game is rigged: Markov wins all ties. So if you play randomly, you will lose two-
thirds of the time. Madeline’s only hope is for you to predict Markov’s moves. 

If his past  dozen moves have been “R R P P S S R R P  P S S” you might  think that his next 
move will be R (rock)—and that  therefore your next move should be P  (paper). If Markov’s moves 
were simply a repeating pattern, this would be enough to win the game. But the moves are, as you 
might expect, governed by a Markov process—so patterns do not repeat exactly. 

Markov’s sequence of moves appears on the screen and 
is recorded in a table. You can infer a pattern from that 
sequence, but the process is arduous. To make the decisions 
easier, you can make a graph that  plots Markov’s moves against 
his two previous moves. That graph shows the (empirical) 
conditional probabilities in the Markov process for each of the 
nine possible “antecedents” (SS, SR, RR, RP, etc. ).

The illustration shows such a graph. The first column, 
for example, shows that in this game, every time Markov has 
played two scissors in a row (SS) he has always followed it by 
playing paper (P).  So you should play rock, as described above. 
It’s not  all certain, though; after PS, Markov usually plays 
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scissors, but not always.
You can also make a strategy for the game. By this we 

mean that you can specify, for each antecedent, what  your move 
would be. The illustration shows a few of the nine “strategy 
tiles” including the one that will play “paper” in response to 
Markov having moved SS. Back in the game, the system will 
use the strategy to play automatically if you wish.

USING ANALYTICS TO STUDY STUDENT GAME PLAY
Students can learn to read the graph, make strategies, 

and save the dog. But  what actually happens? Fortunately, Data 
Games records every student on-line action. We can mine these 
“learning analytics” to see what students did. 

For this paper, we recruited a class of 20 US high-school statistics students, aged 16–18, 
early in the academic year. The class session was 75 minutes. The beginning was taken up with 
introductions and playing a different Data Game (Cart Weight) in order to familiarize students with 
the interface. There was minimal instruction in how to play Markov except for occasional 
interactions with individual groups and a class-wide suggestion that it might  be useful to make a 
graph. 

Figure 1.  First-graph times (in seconds) for the ten groups. The activity started at 950.

This illustration is an example of the kind of information we can extract. It  shows when the 
10 groups first  made graphs while they were playing Markov. We started playing Markov about 
950 seconds into the data collection. Two groups made graphs spontaneously, while the other eight 
did so soon after the suggestion was made, about six minutes after they started playing (ca. 1310).

If we believe that looking at  graphs is a good habit  for students of data (and we do; see 
Finzer 2013), we see that this class does not yet have that habit. Later in the year, we would hope 
that more groups would make graphs spontaneously, and that the delay in creating graphs would be 
shorter. 

We can also use analytics to look at  a single group’s work. In this class, each group 
produced several hundred records. We can look at these as a list and be fairly confident in broad 
inferences about  what students are thinking and doing. For example, data show sequences of game 
turns interspersed with other events such as setting strategy. After setting strategies, the groups 
generally do better: the elevator goes up. This suggests that the students have figured something 
out. And when we look at the specific strategies they set, we see that they are generally good ones. 

Reading the list  is not as compelling as a graph, however. Figure 2 shows the height of the 
“elevator” over time for “Group 3.” 

Figure 2.  “Elevator” graph for one group (Group 3).

Each of the symbols represents one round; the symbols change when the group finishes a 
game and decides to change “level.” (Each level has a different Markov pattern, so players need to 
change strategy.) This group played one game at  each level. The group won the first  and second 



games (cross and square)—the elevator reached the top at 25—but  they never figured out the third 
game. In the first game, there is a gap of about 200 seconds; further investigation reveals that the 
group created a graph (aha!) and spent  time setting a strategy. After the gap, the slope is steeper: 
they’re letting the computer play automatically (and win) using the strategy they specified. In the 
second game, the “strategy gap,” at about 1900, is shorter. 

Different groups have very different  patterns. “Group 8,” in the next illustration, used 
autoplay much more extensively, completing a total of twelve games on four levels in the same 
time period. Their pattern for the first game was similar to Group 3’s. Then, after quickly losing the 
first “square” game at about 1450, they paused to adjust their strategy and then won rather quickly. 

Figure 3.  “Elevator” graph for Group 8.

Let’s take a more detailed look at  the second and third (“square”) games. In Figure 4, 
symbols indicate the group’s moves (left) and whether the moves were manual or automatic (right):

              

Figure 4.  Second and third games from Group 8 in detail. 
At left, the group’s moves; at right, whether they used “autoplay.”

It  looks as if Group 8 deliberately lost the first game, playing “Rock” quickly and 
repeatedly. A flurry of strategy-making (not  shown on this graph) started at about  1470. It  turns out 
this is a common pattern; some groups play quickly and lose, in order to amass enough data to 
make a better strategy. In this case, the group confirms this inference in their post-class writing:

When we started the game, we picked the same choice over and over so we could see what 
kind of patterns he was using. 

When we see that pattern in the data, can we infer that  they’re using this strategy? Not 
quite—but we can make such inferences more secure with additional research. 

Now let’s study the quality of moves. Looking back to Group 3’s third game (see Figure 2)
—the one they didn’t  complete—we can investigate what  went wrong. Recall that when a group 
makes a move or defines a strategy, we know Markov’s previous moves just  as they did. So we can 
tell if their choice was a good one based on that  historical data. Let’s define goodHistory to be the 
number of rounds the players would have won if they had used that  move every time that situation 
had come up (i.e., whenever that set of Markov’s previous two moves was the same). And we’ll 
call the total number of such opportunities totalHistory. 



Looking at the graph (right), for example, if Markov’s 
previous two moves were “rock-rock,” (RR), we should move 
“rock” (to crush the scissors we think Markov will choose). In 
that case, goodHistory will be 25 and totalHistory will be 39. 

Basically, if goodHistory  is more than half of 
totalHistory, Madeline will generally rise. The left-hand graph 
in Figure 5 shows the relationship between those two variables
—and the “break-even” line—for Group 3’s third game. (Notice 
that this graph is not  a time series.) We’ve coded the points by 
Markov’s two previous moves. You can see that the del-shaped 
points, indicating prev2 = RR, trail into the “bad” area below 
the line. The group had a bad strategy for that condition. Instead 
of playing “rock,” they played “paper.”

The right-hand graph is an elevator time series, with all the “RR” points highlighted (red). 
If the group had chosen a better strategy for RR, they would easily have won. 

 

Figure 5.  Different views of Group 3’s unsuccessful third game.

How did Group 3 choose that bad strategy? Again, we can look back in the data—and 
discover that  they had made a reasonable choice at the time. When they set that strategy tile to 
“paper,” they had recently seen a long string of R’s, and goodHistory : totalHistory was 5 : 8.  But 
they did not review their choice in light of new data. Long strings of R’s are rare and did not recur. 
By the time they gave up, that  ratio was only 10 : 25. (On the other hand, data show that  the plunge 
between 2450 and 2500 was primarily a string of bad luck.)

These have been only a few examples of what’s possible. These learning analytics, 
especially when displayed in a graph, show us details about student work that are otherwise 
invisible. These rich data, of course, bring up new questions about  what  happened; yet we can often 
answer those questions with creative, nimble data analysis. 

MARKOV AND CONDITIONAL PROBABILITY
Playing Markov does not  teach conditional probability. It’s background or reinforcement. 

An instructor can use it  as a common referent  when teaching or reviewing the more formal and 
opaque concepts associated with the topic. In the game itself, players need the underlying, 
conceptual idea of conditional probability to succeed. They must  recognize the condition—
Markov’s previous two moves—and use the tools they have to determine, at  least  informally, the 
various conditional probabilities. In this game, that analysis takes place in a column in the graph.

Even inexperienced players understand this almost intuitively, and can come to understand 
the graph. Following Martignon & Krauss (2009), the graph shows individual cases rather than 
bars or pies. There are no hard formulas to apply. And the most  useful and relevant graph is the 
default; the player doesn’t need to configure it. 

Even though the graph helps make it obvious, however, there are still challenges. For 
example, students have to change the way they look at  Markov’s pattern. It’s easy to think of it as a 



sequence, e.g., “two rocks, then two papers, then two scissors, repeat.” That is a compact, natural-
language representation, and good for making predictions. But it breaks down when the pattern 
varies; then it’s more useful and complete to think of it  in terms of the nine conditions (defined by 
Markov’s previous two moves) and the probabilities of each of three possible outcomes (Markov’s 
next  move). The graph in the game helps players make this shift  from sequence to conditions-and-
probabilities, and it’s exactly the tool they need in order to specify a strategy. Sometimes, we can 
even see this transition in the analytics; the time gaps in Figures 2 and 3, when the groups made the 
graphs and then made strategies, are extremely suggestive.

Thus, analytics show that students are using data to make good decisions in a conditional-
probability environment. Students win games, and their decisions (and speed in making them) 
improve with experience. But what do they really understand?

I am reluctant  to draw firm conclusions. Does Group 8 understand the game better than 
Group 3? It’s tempting to say so; they won more games, and actively generated the data they 
needed to strategize. But they also lost more games—and they were lucky. Furthermore, speed 
itself does not denote understanding. Some groups were, frankly, more devoted to saving Madeline 
than others. They were unwilling to “sacrifice” even a virtual dog in order to get data, so they chose 
their moves carefully—and more slowly. And it’s an even bigger step to attribute success or failure 
at the game to understanding or confusion about conditional probability. 

Nevertheless, these data can be one part  of a comprehensive assessment  strategy. They 
complement artifacts from student problem-solving and reflection. In addition, they help us detect 
student behaviors (e.g., not revisiting the strategy and paying the price) we might otherwise miss.

MORE POSSIBILITIES FROM ANALYTICS
What else should we do with such data? 
These analytics may give us a window into hard-to-document  student data practices. We’ve 

already mentioned the importance of making a graph early. In other settings, we would want to 
know what  students made a graph of—and that  information is available as well. In this game, when 
you change levels, there is a danger (despite on-screen warnings) of trying to analyze a new pattern 
using old data. We can see that mistake in the student records, and how the students recover from 
it. Perhaps we can see evidence of other important data-science habits-of-mind (Finzer 2013). We 
wonder how students clean data, how they organize it, what new variables they make, and so forth
—and that is all accessible here.

Learning analytics can also help us be better teachers. We cannot  be everywhere. If some 
students seem to be working productively, we might  ignore them in favor of a group that is 
obviously having trouble. For example: in this class, although I was watching over students’ 
shoulders and answering questions, it  escaped me that  two of the ten groups hardly ever used the 
strategy feature or autoplay. For their work, I can analyze whether their moves were good (they 
were making good moves according to their graphs of Markov’s historical data) but we have no 
evidence that  they were confident enough to make their strategy explicit. Knowing this in 
retrospect, I can look harder at their work for evidence of understanding. And if I had known it in 
real time, I could have checked with them to see if they were even aware of the strategy and 
autoplay features. 

HOW SHOULD WE ANALYZE LEARNING ANALYTICS?
Coarser-grained data such as that  from online quizzes and skill practice tell us student 

scores and accomplishments. Elsewhere (Erickson 2013), I described how we designed Data 
Games leveling-up to ensure, for example, that  anyone reaching the third level in the Cart Weight 
game has some understanding of linear functions. Here in Markov, anyone who completes two 
different  levels with a preponderance of good moves probably knows how to interpret  that graph—
and that has some connection to understanding conditional probability. But  the move-by-move 
microdata we’re exploring here give us more detail—a more nuanced picture of a student’s skills 
and understanding.

Which brings us to the problem of how we should use these data. First  of all, taking 
Markov as an example, just looking at  the “elevator” time series tells you a lot. You can see the 
different  groups and how their profiles differ. It’s a richer picture than a simple count of how many 
games a group won or lost.

We should immediately give teachers access to these data with useful representations at  the 
level of the elevator graph. Such graphs help give a picture of what  went  on (or is going on right 



now) in class. We still might want to enhance that simple plot, for example, by showing when the 
group set  strategy tiles; that  would help explain gaps and help us infer understanding from 
subsequent speedy wins.

But  it’s hard to decide on the enhancements. As we said at the beginning, we’re asking the 
data to stand in—if only partly—for our being present in the group. The elevator graph is clearly a 
step in that direction, but to get  an even more detailed picture is harder. Could we automatically 
detect whether a group is sacrificing dogs for data? Can we flag a loss that occurred when a group 
failed to reset the data after changing levels? Can we easily tell whether a group simply got lucky 
with their strategy, and did not  actually use their data well? All of these are possible, but difficult  to 
get perfectly right. Moreover, we suspect  that  for every one of these interesting possibilities we 
want to study, there are two that we have not  recognized. The data are rich and complex; it’s still 
time for exploration.

So what’s a teacher to do? At  this point, I think the best approach is for teachers to analyze 
the data using the same tools the students use when they play the games. They will not  have fancy, 
purpose-designed visualizations, but they can explore the data much as I have done in this paper, 
studying apparent anomalies and digging more deeply into what students may be thinking. The 
Data Games/CODAP system students use is now (January 2014) nearly capable of the analyses I 
have shown (I used TinkerPlots and Fathom); and teachers whose students use it  will have an 
interest in being fluent  in its use themselves. This possibility even allows the enticing 
metacognitive move of giving student records to students for analysis. 

CONCLUSION: WHITHER RICH ANALYTICS
If a simple report of on-line achievements is “coarse” learning analytics, let’s call this 

“rich” analytics. This report on the Markov game is an intriguing example. What’s next?
As resources permit, I hope Data Games and its descendant, CODAP, make analytics like 

these more available. This will require thinking, testing, and tweaking of what data are recorded.
As researchers look for tools, I hope they incorporate rich learning analytics so we learn 

more about  the validity of conclusions we draw from these data. Two paths immediately suggest 
themselves: more work connecting patterns in the data to our understanding of what students are 
thinking (as I did above with the student writing about sacrificing dogs for data); and the creation 
of other online environments whose analytic data can assess whether students learn less-proximal 
skills. That  is, we know Markov students get good at  Markov; can they transfer that  to any other 
conditional-probability task? 

Speaking as a teacher, I’m struck by the way these data let  me “perch on the shoulders” of 
more students in my class; and even though they don’t tell me definitively who understands what,  
rich analytics give me useful information, very quickly, that I never had before. 
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