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ABSTRACT

We compare and contrast statistical inference with scientific inference, looking 
for perspectives and insights to help us improve instruction in this difficult topic. 

Let’s begin with a thought-experiment that involves informal inference in statistics:

You flip a coin 20 times. Suppose all 20 flips are heads. For most people, this is reason 
enough to doubt  the fairness of the coin. If you had gotten 10 heads—ignoring order—most 
people would say that  the coin appears to be fair. Even if you had gotten 11 or 12 heads, most 
people would say the same. After all, you won’t always get exactly 10. But somewhere between 
12 and 20 heads, you go from acceptance to doubt. 

Now suppose you get 16 heads in 20 flips. Is the coin fair? In making your decision, you 
infer about the coin based on observations of the coin flips. We might go so far as to simulate 
flipping a fair coin 20 times, repeatedly, and see that 16 heads is unusual:

Let’s compare this to inferential reasoning in science. Suppose we have this conjecture:

Objects rolling down a ramp accelerate uniformly.

In a typical school science lab to test this statement, students roll a ball down a ramp, 
timing it  from various heights. The resulting data should show a quadratic relationship between 
distance and time—and they generally do:

From the point of view of a statistics teacher, these are two problems from different parts 
of the course: the coin problem is from binomial probability and the introduction to hypothesis 
testing, while the rolling ball problem is from the unit  on fitting curves. But we are not interested 
here in finding the best value for the parameter (in this case, the acceleration a under the square 



root). Instead, we want  to assess whether the conjecture that  gave rise to the graph is correct. Do 
rolling objects accelerate uniformly? What do the data tell us about that?

This follows the hypothetico-deductive model for how science works, as described by 
Popper (1968). In broad strokes: Scientists observe phenomena and generate hypotheses. They 
imagine the consequences of a hypothesis, and design experiments to see whether the 
consequences do in fact  occur. If they do not, this will (eventually, allowing for error and other 
possibilities) falsify the hypothesis, and force us to discard it. 

Applying this to the coin situation makes sense: we have a hypothesis—the null 
hypothesis—that the coin is fair. We design an experiment  (flip it 20 times) to test that hypothesis. 
We predict  what will happen in our experiment if the hypothesis is true. And finally, when our 
result does not match with prediction, we reject that null hypothesis. 

How are these two situations the same, and how are they different? We will begin with 
logical similarities, but  let  us foreshadow one of the big differences between statistics and 
science: In statistics we usually try to show that  the relevant hypothesis—the null hypothesis—is 
false. In science, we usually try to show that it is true. 

UNDERLYING LOGIC
Not only do science and statistics share some language (e.g., hypotheses), but they share 

the same underlying logic as well. This derives from the classical modus tollens: If I know that P 
implies Q, and I observe that Q  is false (not-Q, written ¬Q  here), I can conclude that P is false as 
well. For example, if I accept the conditional (if-then) statement, 

If it is raining, then the streets are wet.

and I observe that the streets are dry, I can conclude that it is not raining. 

Symbolically,

P→Q
¬Q
∴¬P

This maps directly onto our statistics example. The logic of the hypothesis test rests on a 
conditional statement such as:

If the coin is fair, only results between 5 and 15 heads are plausible.

When we see 16 heads, we conclude that  the coin is not fair. To be sure, there is the 
chance that  we are wrong (and commit a Type I error); variation pierces the watertight logic of 
modus tollens—but the pattern of reasoning still holds. Mapping this logic into a science context 
works as well, but is more subtle:

If rolling objects accelerate uniformly, and if I make good measurements, then my 
distance data will be proportional to the square of the time.

If my results don’t show that  quadratic pattern, there are two possibilities: either the ball 
does not accelerate uniformly, or the measurements are not good. In either case, the “conjunction” 
is false. 

Let us move on to another similarity.

PROVING HYPOTHESES AND ACCEPTING THE NULL
In both fields, we warn students that certain tempting statements are incorrect. In 

statistics, we do not “accept the null hypothesis.” Instead, we insist  that students fail to reject the 
null. Similarly, in science, we don’t want  students to say that they proved their hypothesis, but 
rather that the data are consistent with it.



The correct language helps students avoid a fallacy related to the underlying logic:

If I observe that the streets are wet (Q), I cannot conclude that it is raining (P); that  would 
be the fallacy of affirming the consequent. In the statistics case, getting 10 or 11 heads out of 20 
(i.e., Q) doesn’t  show that  the coin is fair. In science, the fact that  the ball data was quadratic 
doesn’t prove that the data follow the same pattern between measurements.

Does such a result have any use? Yes. Common sense (or a Bayesian perspective, or 
Occam’s Razor) comes into play: if the streets are wet, the idea that it might  be raining gains more 
weight. In addition, the scientific community values alternative hypotheses. We imagine their 
consequences and test  them. For example, you could suggest  a hypothesis involving a water-
balloon fight to explain the wet streets. A failed search for balloon fragments would support  the 
rain theory. In science, this is often described as the evidence in favor of a conjecture or 
hypothesis accumulating until the hypothesis is generally accepted. 

VARIABILITY, SAMPLE SIZE, AND REPETITION: LESSONS FROM SCIENCE
In the coin simulation, even a fair coin will give different results because of the inherent 

random nature of the process. More broadly, when we’re talking about informal inference in 
statistics, we want students to be thinking about whether chance (and the null hypothesis) could 
have brought about the data we see, and assess the null’s plausibility that way—even if, because 
this is informal inference, we have been loose about defining the null. 

We think about  variability differently in science. We ask whether inevitable measurement 
errors can explain any deviations of our data from the theory. In practical terms, we make error 
bars for our points and see if the curve goes through—or close enough to—the bars.

How big do we make the bars, though? We could use an a priori value: timing a ball with 
a stopwatch, we might  assign an error of ±0.2 seconds. It  might be better, however, to calculate 
the size of the error bars. Scientists often do this by taking repeated measurements and calculating 
some number of standard errors (e.g., 2), essentially making a confidence interval (in this case, 
about 95%), and plotting that  range as the bar. The more points you have, the smaller the bars will 
be. Thus repeated measurements in science behave like increased sample size in statistics: 
beneficial, but subject to diminishing returns. 

Yet  there’s a pedagogical sinkhole: calculating standard error, and distinguishing it  from 
standard deviation, is a black box to most  science students. If we’re trying to be informal, can we 
dispense with the calculation?

Yes. If you look back at the graph of rolling-ball data, you can see the vertical stacks of 
points that serve as visual error bars. Erickson and Cooley (2005) even suggested that in informal 
data analysis, we should dispense with error bars—and the black-box calculation of that standard 
error—in favor of eyeballing the curve through the stacks of points. Even a few points give an 
impression of how much variability there is and give you a sense both of the range of possible 
parameter values and of whether the form of the function is plausible. 

The same seems true in any curve-fitting situation: an eyeball fit, especially with 
residuals, does a good job at estimating the parameter, and longer or shorter error bars won’t 
make a lot  of difference (Erickson 2008). But  it  may not be true that an eyeball estimation of the 
mean, say, from a large sample will be any narrower than that  from a small sample. The way 
sampling distributions get narrower with sample size may still be non-intuitive. 

At this point, it will be good to address two common misconceptions.

First: Repeated measurements help. One flip of the coin tells us nothing about its fairness. 
So we flip it 20 or 200 times. But  what  about that histogram that  showed how unusual 16 heads 
were? Is that another example of repeated measurements?  

Yes and no. In that  graph, one “unit” is 20 flips. The graph shows 1000 such units, so in a 
way it’s like doing our whole experiment 1000 times. But  be careful: the graph no longer shows 
20 flips of our coin but  20000 flips of the null-hypothesis fair coin. It is true that the graph shows 



the size of our logical modus tollens leak (about 1%), and it  is a tool for helping us understand our 
data, but it does not show our data at all. 

Second: We often say in science that we value reproducible experiments. But  this practice 
of repeating measurements is not about reproducibility. Reproducible experiments ensure that 
your results are generalizable: they must occur in other people’s labs as well as your own. 

This has parallels in statistics: If you are concerned that  the particular way you flip a coin 
might  skew the results, you should get other people to flip the coin, assigning flippers at random 
to different  flips. Put another way, reproducibility is to science what randomization (and random 
sampling) is to statistics: both support generalizability. But that’s not what repetition is for.

LANGUAGE, LOGIC, AND THE SUBJUNCTIVE MOOD
Consider this statement:

If I were to flip a fair coin 20 times, the results would range roughly from 5 to 15 heads. 

This informal statement—with its ill-defined “roughly”—is exactly the kind that  leads 
well to understanding formal statistical procedures.

In an informal setting, even though we might not  ask for probabilities, we would like 
students to make a statement like the one above, and use it to reason about their coin. In fact, of 
all the elements that  contribute to informal approaches, this one seems particularly useful—and 
correspondingly (and ironically) unlikely to arise by chance in the mind of the naïve student.

Why is that? One problem is that  the question is about  a hypothetical fair coin—not about 
the actual data. From a linguistic point  of view, it  is in subjunctive mood. It is contrary to fact. I 
have not  flipped a fair coin 20 times, nor will I (in a traditional stats curriculum). Our pedagogical 
question becomes: What prompts a student with a real coin to compare it to a fictitious one? 

Let’s look at a parallel statement in the science context:

If rolling objects accelerate uniformly, and if I were to roll a ball down the track for 
various distances and record the times, then the distances should be proportional to the 
squares of the times.

This conditional statement maps onto the logic we saw earlier; it even has the two-part 
antecedent. And it is easier to imagine students coming up with it. Perhaps this is because it  is 
something the students expect  to do: unlike flipping the fair coin, they will in fact  roll the ball 
down the ramp from various distances.

Even so, if we ask science students to produce a statement  giving an overview of the 
purpose of their upcoming lab experience, they are more likely to say this:

If I were to roll a ball down the track for various distances and record the times, then the 
distances should be proportional to the squares of the times.

That is, they omit the “mechanism” part of the statement, the actual theory they need to 
test. They accept as fact  that  the rolling objects accelerate uniformly (it’s in the book, after all) 
and interpret the school activity as testing not the theory of rolling objects but their ability to 
measure accurately. Put more bluntly, they miss the point. 

CAUSALITY, MECHANISMS, FACTS, AND RELATIONSHIPS
This problem of omitting the mechanism seems to be one where science students have a 

problem that  statistics students do not. For in general, scientific inference is all about  evaluating 
mechanism and causality (does gravity work the way we think?), whereas statistical inference is 
about assessing facts (is the coin fair?) and, in fact, often avoiding causality as dangerous.

Let’s explore this idea of “mechanism” briefly, using an example from Erickson and 
Ayars (2005). Students read an obviously fake physics paper, “On the Descent  of Cotton Balls,” 
which said that the distance s a cotton ball falls in time t is proportional to the square of the time:



s =
1
2
kt 2

where k is the acceleration of the ball. The paper explained that air resistance affects the cotton 
ball, so k is less than g, the acceleration of gravity. The assignment challenged students to design 
and perform an experiment to test the hypothesis in the paper. (The paper is wrong. See Note 1.) 

Here are some data with a curve showing k = 6 m/s2:

A typical response from a class of state university students—in the second semester of a 
physics sequence for engineering majors—was to do repeated drops of the cotton ball from one 
height, average the results, compute k, and report  it as confirmation of the theory. In a more 
sophisticated (but still troubling) response, students dropped the ball from various heights, 
computed k for each height, and reported the various values of the “constant” k—again, as 
confirmation of the theory. 

Evidently the students did not  recognize that the form of the function in the paper, its 
particular symbolic representation, is part  of the hypothesis they were supposed to test. It  also 
seems likely that the students were so used to doing labs designed to confirm a formula in the 
book that the notion of falsifying a conjecture—which to Popper is central to scientific work—did 
not occur to them.

So two things may make this hard for students: first, the conjecture is about a mechanism 
whose prediction is a relationship rather than a single quantity; and second, students’ school 
experience in science is to verify as true what they have been given. This is a cautionary tale for 
those of us interested in creating richer activities for students in statistics.

SUMMARY AND SUGGESTIONS
Looking back over this discussion, the problem of getting the underlying logic right—and 

all of its ramifications, linguistic and otherwise—seems to be a persistent problem that  science 
and statistics share. Basically, students need to know what they can conclude from their 
observations, and how to describe their results correctly.

Even informally, students need to develop a sense of what’s plausible. And even if they 
use what Edwards et al. (1963) called the “interocular” effect to make a determination (it  hits you 
right  between the eyes), they need to compare their data to something—the thing that will 
eventually turn into the null hypothesis. That  comparison arises from the antecedent (the if-
clause) in an underlying conditional statement: if I were to flip a fair coin 20 times…

And that  is the problem: getting students to recognize, when flipping their real coin, that 
they need to imagine the nonexistent fair one. This problem really has two parts: recognizing the 
need for a conditional statement at all, and finding the right  antecedent. The antecedent  problem 
arises because it’s so hypothetical. Is there a way to make the null hypothesis real?

Yes: through simulation and resampling. Simon (1993) wrote an early book about  it; 
Erickson (2006) commented that simulation can help students make the null hypothesis real; and 
Cobb (2007) essentially called for the introductory statistics course to be remade with 



randomization-based inference at  its core. The statement  will cease to be subjunctive and will 
become, when I flip a fair coin 20 times, repeatedly…. This is much more like science. 

As to the problem of making the conditional at all, science educators address it head-on. 
Eugenia Etkina and her colleagues (2002) have devised an instructional scheme (ISLE for 
Investigative Science Learning Environment) in which, as part  of the process of designing their 
own experiments, students explicitly learn to construct conditional statements like the ones we 
used above. They have their undergraduate students essentially fill in the blanks in a formulaic 
template: “If my idea _____ about  this phenomenon is correct, and I do _____, then ______ will 
occur,” and then, “but _____ happened, therefore I cannot  reject  the idea yet, (or) but _____ did 
not happen therefore I either need to consider my assumptions or reject the idea.”

Being that explicit is worth considering in statistics. If we take Cobb’s suggestion and 
focus on randomization, students will no longer have to memorize the confidence-interval mantra; 
perhaps the time could be productively spent constructing conditional statements like Etkina’s. 

Even so, (as suggested early in this paper) the science situation is different because 
scientists generally hope that  their hypotheses are true while statisticians hope that they are false. 
(We are not supposed to bring our desires into either field, but  I claim that it  makes a difference; 
you can see how Etkina’s focus on falsification is designed to help students break free of that.)

One obvious suggestion, then, is that we give science students more experience with false 
hypotheses and statistics students more experience with true ones. The “fake paper” activity 
described above (Erickson and Ayars 2005) is an example of the former, and the frightening 
student performance on it is a good indicator of its importance.

What  would the corresponding activity look like in a statistics classroom? What 
irrejectable conjectures can we have them explore? Several ideas come to mind, all of which 
occur in some classrooms already. 

• Plenty of exercises in existing texts result in a failure to reject—but  these most often require 
formal inference methods. It would be interesting to have more that are informal. For 
example, the box plot below shows heights of two groups of 50 young students in 
centimeters. Maria tells you that  the two groups are from the same school, chosen the same 
way. Do you think Maria’s method of choosing people was completely random?

• Students should collect data from apparently fair dice and coins (as they do already in order to 
learn about probability distributions); but  then they should look carefully at  how dramatically 
these diverge from the expected patterns, and come to accept  that amount  of variation as 
plausibly due to chance.

• They should (like the scientists) challenge themselves to find alternative explanations for 
what appear to be null results. For example, if you hear that Gustavo had 10 heads in 20 flips, 
how could the coin be unfair? What could you ask or observe to convince you? (For example, 
suppose Gustavo’s coin alternated heads and tails.) This will help them both in science and 
later in statistics, for example, when they need to develop sampling strategies.

An even greater challenge would be to figure out how to incorporate mechanism and 
causality naturally into more statistics activities. After all, the most interesting data are interesting 
precisely because we have suspicions about their causes. 

So let’s address causality head-on, taking a page from science. We can present engaging 
datasets (such as U.S. income data by sex) and ask: What competing hypotheses explain the data? 
What  additional data could we get  to distinguish among the competing explanations? Even if our 



formal tools may not yet be able to determine causes, the informal insights we might  get—and the 
increased interest—could be worth the trouble.
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NOTES
1: About the physics behind the falling cotton balls: Air resistance does not  simply reduce 

the acceleration, because the force of air resistance depends on speed. As a consequence, 
the distance-time relationship is not  quadratic. The curve starts out  quadratic but 
approaches a straight line when t is large; the slope of that line is the terminal velocity. 
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