
 

 
 

Caging the Capybara: Understanding Functions 
through Modeling 

Tim Erickson 

Epistemological Engineering, Oakland, California, USA 

Abstract   How do advances in technology expand and improve the ways we can 
teach about mathematical functions? In addition to indispensable tools for dealing 
with stochastics, technology gives us modeling tools: tools that enhance data anal-
ysis by letting students graph functions with their data, create new computed vari-
ables, and control model functions dynamically by varying the functions’ parame-
ters. In this paper, we will use an extended example—an optimization task we will 
call the “Capybara Problem”—to show how we can use these tools to address 
common difficulties students have with functions. This paper describes seven dif-
ferent approaches to this problem, beginning at the concrete end of the spectrum—
using physical materials to represent the problem and its constraints—and then 
gradually introducing abstraction in the form of variables and functions. Technol-
ogy supports students throughout this process, helping them understand the nature 
of variables, and helping them learn to construct symbolic functions and to mean-
ing in their forms and parameters.  

Introduction 

Functions are among the most important concepts in mathematics—and not just 
for mathematicians. As lay people, we deal with functions to make observations 
and decisions large and small, personal and public. We often look at functions of 
time: my rent is going up. Unemployment is going down. Sometimes, we’re look-
ing at how one quantity varies with another: The faster I drive, the worse my gas 
mileage. The more coffee I drink in the evening, the harder time I have getting to 
sleep. In any case, functions are relevant because they’re about relationships. 

Traditionally, learning about functions has been an abstract and formal endeav-
or, rooted in algebra. Readers of this volume (especially older readers) learned 
about elementary functions—linear, quadratic, polynomial, power-law, exponen-
tial, logarithmic, trigonometric—from an algebraic perspective. We learned how 
to solve for quantities in symbolic expressions, and came to understand how com-
binations of symbols encoded features of functions—for example, how a positive 
leading coefficient in a quadratic means that the curve opens “up,” or how a num-
ber added to a sine function raises the wave. Graphs helped us understand these 
principles, but we did not use graphs to solve problems: they were too hard to 
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draw. We saw some data, although not very much of it. More often, we struggled 
with abstract symbolic representations, and learned their properties.  

We can improve this. It is now easy to make graphs, and easy to find and in-
corporate data into problems and investigations. We should use these new tools to 
make learning about functions more accessible, concrete, and effective.  

Developers at the postsecondary level (e.g., Engel 2010) have addressed this 
problem under the aegis of applied mathematics. At the school level, it is currently 
popular in the US to call this a modeling approach. Fortunately, there has recently 
been a greater call for more modeling in mathematics education (e.g., in the 
“Common Core” State standards, NGA 2010). Because of improvements in tech-
nology, it is now practical to do genuine modeling in the secondary classroom. 
(See also Erickson 2005 for examples.) 

Let us take as given that we believe that being rooted in data is a good idea, and 
that graphs—created through technology—can give you more insight than a typi-
cal algebraic expression (Kaput 1989).  

We will spend most of this paper dissecting an example in detail. During this 
journey, we will see how two ingredients—dynamic graphs and data—combine to 
help students make sense of functions. The graphs give us insight into the func-
tions; the data gives us realism and rich, interesting contexts. We will also see 
how data, the epitome of concreteness, helps us on the road to abstraction.  

The Capybara Problem 

Consider this typical introductory calculus problem: 
The Queen wants you to use a total of 100 meters of fence to build a Circular pen for her 
pet Capybara and a Square pen for her pet Sloth. Because she prizes her pets, she wants 
the pet pens paved in platinum. Because she is a prudent queen, she wants you to 
minimize the total area.  
What are the dimensions of the Queen’s two pet pens?  

In a problem like this one, students often have trouble setting up the function to 
be minimized, in particular: 

x Choosing a suitable single independent variable. �
x Confusing the side length of the square with its perimeter.�
x Maintaining the 100-meter constraint.�
x Finding the area of the circle given its circumference. �

There are some chain-rule challenges in taking the derivative, but if you can’t 
make the original equation, no amount of differentiating will get you the right an-
swer. In the traditional calculus class, moreover, the instructor is focused on the 
calculus, not on how to build the right function.  
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Seven approaches to the capybara problem 

To see how modeling and data can help with this, let us approach this problem 
from different points along a “continuum of abstraction,” gradually leaving behind 
physical materials and the construction of specific circles and squares as we grad-
ually introduce variables, functions, and generalizations. (We can also view it as a 
developmental sequence.) These different approaches will help students under-
stand different parts of the formula-creation process. 

1. Each pair of students gets 100 centimeters of string. They cut the string in an 
arbitrary place, form one piece into a circle and the other into a square, measure 
the dimensions of the figures, and calculate the areas. They glue or tape the 
shapes to pieces of paper. The class makes a display of the shapes and their ar-
eas, organizes them—perhaps by the sizes of the squares—and draws a conclu-
sion about the approximate dimensions of the minimum-area enclosures. 
This approach is the most concrete; even elementary students can use it. It is 
modeling even though it does not use functions. The experienced teacher can 
highlight the way the problem constrains the total amount of fence: To make a 
small total area, why can’t you just make a little circle and a little square? Be-
cause you have to use all the string. 

2. Same as above, but we plot the data on a graph. To do this, we have to decide 
on an independent variable—a number that tells us which of the versions of 
fence is which. We probably choose the side length of the square to “name” a 
configuration. (The dependent variable is easier; here we would use the sum of 
the areas.) We can estimate the dimensions and the minimum area from a 
sketch of a curve through the points—an informal function, if you will.  

3.  We enter the data into dynamic data software, plot the points, guess that they 
fit a parabola, and enter a quadratic in vertex form, adjusting its parameters to 
fit the data. This approach introduces symbolic mathematics, and needs tech-
nology in order to be practical in the classroom.  
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Fig. 1 Fitting a quadratic function informally using Approach (3), using Fathom  

The Figure 1 shows what this looks like using Fathom (Finzer 2007); we’ve 
plotted total area (totalArea) against side. The sliders at left are the parame-
ters that control the curve. These vertex-form parameters are the side of the 
“best” square (MinSide), the minimum total area (MinArea), and (A), the 
quadratic’s leading coefficient. The function’s formula here is 

 totalArea = MinArea + A (side – MinSide)2. 

You could do (1), (2), and (3) in rapid succession, to help students see connec-
tions among the string diagrams, the measurements, the graph of data points, and 
the graph of the function on the computer. 

4. We use diagrams: instead of making the shapes with string, we draw them on 
paper. An individual or a small group can more easily draw several different 
sets of enclosures. This requires more calculation. For example, if we draw the 
square first, we have to calculate how big the circle must be before we draw it. 
This is a big step towards abstraction. The string doesn’t help us keep track of 
the fence-length constraint, so we ourselves need to ensure that the sum of the 
perimeters is constant. 

5. We make a diagram again, but use a variable for the length of a side and calcu-
late expressions (instead of numbers) for all the other quantities. So we create 
no specific cases, we no longer measure, we no longer plot data at all. Instead, 
we use our expressions for the areas of the figures and plot their sum as a func-
tion of the side length—and read the minimum off the graph.  

Specifically, if the square’s side length is x, its perimeter will be 4x. The cir-
cle’s circumference will have to be (100 – 4x), and from that we can find the 
radius. We use those to find the total-area function A(x): 
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This problem setup is the same as for calculus, but to find the minimum, we use 
graphing software and approximation. Thus this approach includes all of the 
abstraction that many students find so difficult.  

6. We use algebraic techniques (including completing the square) to convert this 
expression to vertex form, from which we read the exact solution. Using this 
approach, we might not even plot the function.  

7. We use calculus, and avoid some messy algebra in (6). Interestingly, complet-
ing the square in (6)—which students traditionally learn before calculus—is 
much harder than taking a derivative, setting it to zero, and solving. 

How data, modeling, and technology help 

You can see that these different approaches gradually introduce more abstraction. 
We conjecture that they will “scaffold” students as they work to write that A(x) 
function (above). Let us look in detail at the roles that data and dynamic graphs 
play in that process.  

From data to table to scatter plot 

First let us look at what data the students need to record. In the first three ap-
proaches (1–3), it is useful if they write the (measured) side of the square and the 
diameter of the circle; possibly the radius of the circle; the two (calculated) areas1; 
and their sum. Although the way students record data spontaneously may be in-
formal and incomplete, this is a good chance to help them decide to organize the 
data into a table, with columns like a spreadsheet; this is how it will go into the 
computer, after all.  

                                                           
1 One could have students make the figures on grid paper and count squares to determine the ar-
ea, but we’ll skip that here for simplicity. 

A(x)  x2 �Sr2  x2 �S 100 � 4x
2S
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Fig. 2 In this illustration, the students measured the side of the square and the diameter, but 
computed S_area (the square area), C_area (circle area), and totalArea. They did not 
need columns for perimeter and circumference; that will be essential in approach (4). 

In approach (3), students enter this data into a table on the computer. This 
brings up a question: of these columns, which ones did you measure and which 
did you compute? And if you computed them, how did you do it? Students tend to 
calculate area, for example, using a calculator, and then type the result into the ta-
ble cell. But instead, we can encourage them to have the computer do the calcula-
tions for the columns they compute. 

For example, they probably divide the (measured) diameter by 2 to get the ra-
GLXV��WKH\�VTXDUH�WKDW�DQG�PXOWLSO\�E\�ʌ�WR�JHW�WKH�DUHD�RI�WKH�FLUFOH��VHH�Figure 2). 
Asking them to write these as formulas so that the computer does the calculation 
accomplishes two things: it alerts students to the fact that they actually know how 
to perform parts of the calculations, and it separates what will become a very 
complicated formula into manageable chunks. 

Adding the dynamic (and empirical) function to the graph 

After students graph the data in approach (3), we introduce a dynamic function: 
we put a function on the graph and adjust it to fit using slider-parameters. At this 
level, students need to know how to write a formula for a parabola in vertex form. 
They need to parameterize it appropriately as well, so they can enter it into the 
software. 

The vertex form is perfectly suited to dynamic graphing software: students see 
how changes in parameter values change the function. When they drag the sliders, 
they get a visceral feel for how the transformations work. When a residual plot is 
present as well, students see the parameters’ effects there, for example, how 
changing the principal coefficient straightens the residuals (See Erickson 2008 for 
details). 

Yet the symbolic form of this function will not look like the one that arises 
when we do the calculus problem—it is an empirical function, and therein is one 
of the delicate aspects of this approach. We will soon see how students come to 
discover the more “theoretical” form. 
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Having the computer calculate as much as possible 

In (4), when students begin with a diagram instead of string, students have to use 
even more symbolic tools: they have to deal with the 100-meter constraint, and 
figure out the diameter of the circle given its circumference.  

It helps students to have a detailed, many-columned table like the one they used 
above. But they now increase the number of columns, and write formulas for more 
of them. If they start with the side of the square, for example, they can write a 
formula for its perimeter. And if they know the perimeter, they can calculate the 
circle’s circumference. They may not feel comfortable writing formulas for all of 
the derivable quantities, but that is our ultimate goal. If they start by choosing the 
length of the side of the square (or any particular quantity except total area), they 
can calculate every other quantity in the table—and make the graph.  

 
Fig. 3 The student is using Approach (4) in this table, computing everything based only on the 
side of the square. In contrast to the table in Figure 2, nothing is actually measured. 

In making these formulas, students become aware of the repeated calculations 
they have been making; they see how to express those calculations symbolically in 
formulas for columns; and most important, they see that it is worth the effort to 
make the formulas. When they realize that they don’t need to actually measure 
anything in the diagram to determine the two areas, they are ready to move on 

Doing without the data points 

Approach (5) is the modeling payoff. Instead of an empirical function that fits the 
data, we create the function from the geometry. The function is quadratic because 
it arises from area calculations, not simply because the data look quadratic. How 
does technology help students make that leap in understanding?  

One way is this: in (4), once every column is computed from the side of the 
square, you can enter any side length you like, and the software will compute the 
sum of the areas. No measurement necessary. The string was a simulation of a 
fence; now we’re using calculation to simulate the string. It is all numbers now. 
So we can blanket the domain with values, and plot the resulting data points, none 
of which depend on sliders. The points lie on a parabola, of course—the small 
points in Figure 4. If we could plot them all, we would have the function itself: the 
infinite set of points that describe the relationship.  
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Fig. 4 In this graph, the small points are values computed from the side of the square based on a 
total length of 100; the function is the student's best fit to the data (the large points). 

How do we turn an infinite set of points into a single curve, a single formula? 
We combine the formulas we have already made for each individual column. This 
is the spot where students need to know how to substitute—arguably a critical al-
gebraic skill. If it is hard for them, they can do it step by step, eliminating one col-
umn at a time, and verifying that the simulation—for that is what this has be-
come—gives the same results. 

Now students can simply plot the function and find the coordinates of its min-
imum. They can even compare it to the vertex form; they can do it graphically, or, 
if they have the skills, they can put both formulas in the same algebraic form and 
see how well they match.   

Reflecting on the process 

This modeling approach addresses problems students have with creating the for-
mula for total area. It also gives us good approximate answers to the original ques-
tion—what are the dimensions of the pens?  

We help students use abstraction by starting, sensibly enough, with something 
concrete: the string. Then we gradually introduce representations and abstractions 
as they become useful. This problem and these approaches are certainly not the 
entirety of learning about functions or about modeling in secondary mathematics, 
but the basic ideas should apply to other problems: 

x A concrete simulation requires the least abstraction and often makes it unnec-
essary to model difficult-to-represent relationships.�

x There are many approaches between that concrete model and the purely ab-
stract, traditional mathematical function.�
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x An empirical graph—one made by measuring specific examples rather than by 
analyzing the generalized situation—often helps students understand underly-
ing functions, and can lead to an approximate solution.�

x An approximate solution may be good enough.�
x Writing easy formulas for “bite-sized” calculations can lead to a more compre-

hensive solution.�
x Dynamic data analysis software helps students organize their data, visualize it 

with graphs, create functions, and make those “bite-sized” calculations.�

Finally, we should not think of using data, or graphs, or even string, as less so-
phisticated or desirable than using calculus. Consider one of the most confusing 
things about the problem—that there is in fact a minimum area. Most area prob-
lems using a fixed amount of fence maximize area. How can there be a minimum? 
A successful calculus student might say, “because the coefficient of the first term 
is positive.” But a student who used the string might say, “because the shape you 
can make with the whole fence is much bigger than two shapes, each made with 
half the fence.” One can make a case that the “string” answer shows more insight. 

Additional Notes and Observations  

Confusing the Data with the Model.  
It is important that students (and teachers) be clear why the data appear as points 
and the model as a curve. The model is an ideal, a fantasy that we are proposing 
for consideration. It exists for any possible value. In contrast, data is reality, and 
exists only at specific values. 

We can use data as a check on models (just like in science) rather than simply 
assuming that a formula must be better than a measurement. When we measure 
string figures, we will get points that do not lie on the curve. This discrepancy 
helps students connect math to reality. There are any numbers of reasons the curve 
might not go through the point. It is fair to blame the data if there is a measure-
ment mistake (in our case, the string may have been a bit long). But the model 
may have missed because we modeled the ideal situation, leaving other aspects of 
reality unmodeled: our circles were not perfectly round, nor our squares square.  

Habits of Mind.  
We want students to develop good mathematical practices; modeling activities 
like this one offer opportunities. Here are two: 

When we ask students to make separate columns for each quantity, and write 
simple formulas, we’re doing two things: we’re helping them encode their 
knowledge in chunks they understand, and learn to combine them; and we’re also 
helping them learn to identify and name variables. By having them use the names 
of intermediate variables in formulas—instead of plugging a numerical value in, 
using a calculator—we’re helping them see the advantage of “keeping a calcula-
tion in letters as long as possible.”  
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Another is to check limiting cases. Even when students are making shapes with 
string, a teacher can ask, “what if we put all of the fence into the square? What 
would the areas be then?” Students can see that the maximum square side is 25 
meters, and the sum-of-areas is 625. This point is an anchor for our curve, one we 
can be sure of theoretically. We can do the same on the other side, with the cir-
cle—which also reminds students how to find area if they know circumference.  

Looking for New Questions.  
Rich approaches like these open up new questions, often suitable for more experi-
enced students that finish early. Here is one that we can investigate if we have a 
table with many columns: suppose we plot the side of the square against the diam-
eter of the circle (see Figure 5, left). Why is it a straight line? Why is the slope –
1.27?  

If that is too easy, plot the area of the circle against the area of the square (Fig-
ure 5, right). What function models that? 

 
Fig. 5 Two additional relationships students can investigate 

Power and insight from graphs and data—especially as things get realistic.  
An abstract, symbolic solution often gives an exact answer when a model or simu-
lation will give us only an approximation. But sometimes an approximation is 
what we really need. 

A task like the Capybara Problem, after all, is unrealistic and idealized. It is not 
that a Queen would not pave her pens in platinum; but a real optimization problem 
would not be so clean. We would have to consider where the pens had to be 
placed, the slope of the ground, the cost of posts, size and cost of gates, plumbing 
to bring water to the area, and so forth. An idealized model, like the proverbial 
spherical cow, is useful because it captures a mathematical essence. But we can’t 
depend on it for the details. In our case, when we look at the graph, we can see 
that the curve, the parabola, is flat on the bottom, and that the total area varies no 
more than 10% when the side of the square is between 10 and 18 meters.  
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A graph tells you this vital piece of information immediately. The exact solu-
tion (side  ����������ʌ���GRHV�QRW�� 

In a modeling curriculum, we will still see these familiar and pristine problems, 
but we should see more and more realistic problems as well. We will see problems 
with more data and fewer clean and artificial constraints. We will see different 
kinds of functions (Thompson 1994), categorical data instead of just numerical, 
and data with inherent variability. Answers will become ranges instead of single 
numbers. We will need to cope with uncertainty in our conclusions. In short, we 
will need to understand stochastics and statistics. 

In those problems, we will need clean, pure functions to serve as models: ideal-
ized relationships that approximate reality in some essential way. We will express 
them symbolically and explore their properties. But we will also have to be aware 
of their limitations—they are only models, after all—and use graphs, data, and all 
the tools of modeling to find real, practical answers and to make informed deci-
sions. 
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