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For some time now, progressive mathematics educators have been trying, with varying success,
to get more data into the mathematics curriculum. Why use data? Working with data answers the
“when are we ever going to use this?” question (Witmer 2002); as citizens, we need to deal with
data in our everyday lives; and data gives a dose of tangible reality to a subject that, left to its
own, often becomes too dry and abstract. In the USA, this effort has produced published
materials (e.g., Burrill et al. 1997; Murdock et al. 2002; Carlson and Winter 1997), presentations,
and workshops for secondary-school teachers—especially as sponsored by the purveyors of
high-powered calculators. Despite these resources, however, many mathematics courses are still
data- (and context-) poor.

What can help math teachers use data in meaningful ways? As part of a physics curriculum
development project (Erickson 2002), our students have been using dynamic data analysis
software to work with elementary functions as models for their data. Not surprisingly, many of
their challenges are fundamentally mathematical; and solving the mathematical conundrum leads
(we believe) to better conceptual understanding in physics (we are not alone, see, e.g., Wells et
al. 1995). It is a relatively small step to view these activities as mathematics curriculum with a
physics context.2 Elsewhere (Erickson 2004) we discuss the process of constructing
mathematical models and how mathematical elements such as function parameters correspond to
physical meaning. There, we also discuss some particular challenges students seem to face
coordinating their understanding of data and functions. In this paper, we will see a few examples
of the mathematical issues students face when they work with data. We will see how technology
lets us focus on ideas that are not particularly accessible without it. How important are these
ideas? How essential is the technology? What insights from technology-rich learning apply in
general? How does working with data in this way affect students’ overall mathematical
understanding? Our ongoing research is only beginning to address these questions.

Fitting Curves to Data: Making Parameters and Using Them
In a typical modeling activity, students fit a function to data. Such activities have been around for
years, but technology may open the door to new approaches. Let’s look at an example. Figure 1
shows data for how far a ball rolls on a pool table as a function of its initial speed.

How do the students make and alter the function? In our project, students use Fathom (KCP
Technologies, 2001). They use a formula editor to enter the function they want to plot. In this

                                                  
1 This material is based upon work supported by the National Science Foundation under Award
Number DMI-0216656. Any opinions, findings, and conclusions or recommendations expressed
in this publication are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.
2 Must it be physics? No, but physics is particularly easy to connect to functions.
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example, they set the parameter A using a slider, which is essentially a pointer on a number line.
They drag the pointer to change the value. The graph of the function updates as they do this, so
students see the effect of changing the parameter in real time.

Figure 1. If students recognize the original shape (in the left-hand picture) as being more or
less quadratic, they begin by plotting y = x2 on the graph (middle picture). That does not
fit, so they must transform the equation; here they have introduced a parameter for the
denominator and plotted y = x2/A (right-hand picture). They have set A = 17.

Already, we can see (or rather imagine, in this static medium) a benefit from technology: since
the function moves in synchrony with the slider, students get a visceral “feel” for the effect of the
parameter on the shape of the function. But the flexibility of software has additional benefits.
The traditional task might give away the functional form (“find the value of A such that y = x2/A
fits the data as well as possible”) but that constraint may not be necessary. Let the student find
the functional form. If Bob thinks, “the points are below the curve, I should subtract,” he could
enter y = x2 – A. If Maria thinks it looks exponential, she could enter y = Ax. But when each
varies the A slider, they will see immediately that their functions will not fit the points for any
value of A.

So finding functions is not just a matter of sliding values. A student can choose the function
itself, how to express the function, what parameters to use, what to slide and how far, and if there
is more than one parameter, which parameter and in what order. These more open-ended
possibilities become more practical when the student has technological help. To reflect these
possibilities, we must also upgrade the questions we ask students. In addition to “what is the best
value of A?” we can ask the deeper, “what happened to the function as you changed A, and
why?”

Let’s look at a 3-parameter situation. Suppose we have data for a projectile in x and time. We
might take the data from a video (shown) where we measure time in frames and y in bricks. For
this parabola, we need three parameters, but we have a choice whether to write it as At2 + Bt + C
or A(t – H)2 + K. Our students tried it both ways and decided that the second version was easier
to make fit—because each parameter did something understandable: A changed the curvature,
and H and K translated the function horizontally and vertically.3

                                                  
3 The physics students also had to make the correspondence with the “physics” formula,
h = h0 + v1t + (1/2)gt2. These physics students said, “hey, we saw that in math class—I never
knew we would actually use it for anything.”
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But getting the parabola close to all the points is difficult; as students make fine adjustments to
one parameter—to fit one part of the data better—another part gets worse. We need a new tool.

Importance of Residuals
Students can use residual plots to show the vertical
distances from data points to the curve. If the fit is good,
these residuals will be randomly scattered about zero. A
residual plot acts as a “magnifying glass,” expanding the
vertical scale so that students see fine deviations that are
hard to detect, especially where the function is steep.
When students see that there is still a pattern in the
residuals, they know that there are still adjustments to be
made. But which parameter to adjust? In this situation,
students discover that when they look at the residuals, A
changes the curvature and K changes the vertical position
(as before), but that now, H changes the residuals’ slope.
So students develop a system: use A to make the residuals
straight, then use H to make them flat, and finally use K to make then zero.

   

Figure 2: The left picture shows our first try, where the top points fit pretty well. The residual
plot (below each main plot) shows how the left-hand points are lower than the curve.
Residuals are as large as 1.5 bricks. To get the second figure, we adjusted A; the residuals
are straight, but tilted. In the third, we adjusted H, and now the residuals are flat, but low.
In the final picture, we adjusted K so that the residuals cluster around zero. Now the
residuals are more or less random, and mostly less than 0.1 bricks.

Deeper understanding comes when students try to explain why the parameters (especially H)
have the effect that they do. More experienced students can do so algebraically (seeing how the
x2 term cancels, leaving only a linear function), but other students can still offer reasonable,
qualitative explanations.

Some computer programs and calculators will, of course, perform a least-squares fit to a wide
variety of functions and give you the “best” parameter values. But the point of this activity is not
only to fit the data, but also to learn about the functions: and that happens when you build the
functions—and set the parameters—yourself.
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Discussion
These examples serve to give a taste of the kinds of things we can now do in teaching about
functions in a data-rich environment. It’s worth musing a little about sources of data and
mathematical possibilities: temperatures falling towards equilibrium form beautiful exponentials,
as do the times between bounces of a bouncing ball. The (signed) distances of Jupiter’s moons
from the planet give us convincing sinusoids, as does the
light intensity transmitted through crossed polarizing filters.
The CO2 concentrations as measured from the summit of
Mauna Loa (shown at right; students manipulate the line
directly by dragging its ends) show a steady increase with a
periodic fluctuation; the residuals from the line are roughly
sinusoidal—teaching us about addition of functions. And (in
our lab, at least) the temperature gain in a microwave oven is
a linear function of the time spent heating, but a power law
function of the mass of the material being heated. Other
techniques for fitting, especially transforming data in order
to make it linear, make sense in this context as well.

Could students do these things by hand, or using a graphing
calculator? Of course. But the speed and the dynamic nature
of the software give students a more vivid experience of how functions work. We believe this
results in correspondingly more understanding.

How is what we describe different from what is already going on? How do those differences
translate into mathematical learning opportunities? We’ll look at three things: dynamism,
redoability, and authenticity.

Dynamism. Our first principle is that we use what we might call “dynamic” technologies. A data
tool that lets students dynamically manipulate a function's parameters will help them see how
functions live in families, and help them characterize the effect each parameter has on a
function’s shape. That the function changes “during the drag” is vitally important. We might say
that with dynamic technologies, students can observe and explain mathematical phenomena.

What do we mean by a mathematical phenomenon? An example: Suppose we have data well-fit
to a sinusoid, controlled by up to four parameters (i.e., y = A sin(B(x – C)) + D). Now we change
the phase slider, C. What will we see in the residuals? They are near zero when C is correct and
show a sinusoid with an amplitude of 2A when C is 180° out of phase. So as we change C, we
see a phenomenon in the residuals: they vanish, then return at double strength. Explaining that
phenomenon helps us understand about sinusoids, and about interference. A subtler issue is, what
is the pattern in the residuals when C has some intermediate value? This is not a question about
data, but about the behavior of functions, in this case, the difference between two sinusoids. Yet
the question arises naturally—you see it happen and wonder what’s going on—when you’re
exploring actual data (and you have enough technological power to drive the display).

We have often been surprised by what happens in a data display. And we tend to notice a
happening rather than something static. On reflection, we often find that this phenomenon, this
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dynamic occurrence, illuminates the data, but also—most important in this context—illuminates
a mathematical principle.

Redoability. Speed and ease of use also make it easier for students to redo an analysis. This
“redoability” is important as we try to develop more open-ended, constructivist activities. In an
example above, Maria can even choose the wrong function (exponential instead of quadratic) and
her assignment is not ruined; the technology helps her redo the work quickly. This makes
exploration less risky and more attractive, and naturally gives students a wider range of
experiences with more functions.

Authenticity. We could just as well have used simulated, cookbook data. What is the value in
using real data, such as data from physics—especially if the students aren’t learning physics?

First, data being real can be a point of entry for a student weary of abstraction. The more
engaging the context the better, but the “wow” factor is not as important as reality. Second, real
data have variation, and students need to see that the curve does not always go right through all
of the points. But finally—and related to redoability—using real data helps students learn to be
critical about which function works. Without real data, there’s really no choice, no chance for
students to see (for example) that not all upwardly-curving functions are the same, nor the
chance to find out that distinguishing between them can sometimes be dicey.
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