
 
   

 

Annals of Plausibility

 

Annals of Plausibility

 

C

 

ONTENTS

 

Hanging a Weight from a Horizontal Cord: Balancing the Vectors Using Similarity . . . . . . . . . . . . 1

 

P. S

 

NERD

 

 

 

AND

 

 J. M. W. D

 

OOGIN

 

On the Descent of Cotton Balls: a Theoretical Perspective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

 

J. K. F

 

INKLEBOTTOM

 

 & P. R. P

 

RIEST

 

Analysis of Thin-Lens Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

 

T. F

 

LINTHOFF

 

Energy Loss in Bouncing Balls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

 

J. K. F

 

INKLEBOTTOM

 

, P. S

 

NERD

 

, 

 

AND

 

 J. M. W. D

 

OOGIN

 

On the Speed of Rolling Balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

 

W. L. W. C

 

ORPORAL

 

 

 

AND

 

 A. G

 

RAINYEAR

 

This journal copyright © 2004 by Epistemological Engineering. All rights reserved.

It is OK to copy pages for classroom or workshop use. For other uses (e.g., to incorporate pages into course readers 
thet students buy) contact us at 510.653.3377 or tim@eeps.com.

In any case, we would love to hear what you do with these, and would be ecstatic to see Actual Student Work of any 
quality. Send it along!



 
Hanging a Weight from a Horizontal Cord: Balancing the Vectors Using Similarity   

eeps media © 2004

 

Annals of Plausibility

 
1

 

Hanging a Weight from a Horizontal Cord: 

 

Balancing the Vectors Using Similarity

 

P. S

 

NERD

 

 

 

AND

 

 J. M. W. D

 

OOGIN

 

A

 

BSTRACT

 

When a weight hangs from a horizontal cord, the tension in the “short” segment is larger 
than the tension in the “long” segment. We show that the ratio of these tensions is, in fact, 

 

the reciprocal of the ratio of the segment lengths.

 

Suppose we attach a cord to two points, 

 

A

 

 and 

 

B

 

, that have the same vertical 
coordinate. Let us further suppose that the length of the cord is greater than 
the distance between the two points 

 

AB

 

. Now we hang an object somewhere 
along that length. If we neglect the mass of the cord, the cord will form into 
two straight segments supporting the hanging object. 

In the static situation—the object does not move—the forces applied by the 
two cord segments must exactly balance the weight of the object. These are 
tension forces, and must be directed along the cord segments, as shown in 
the figure at right. In that figure, we see the two vectors 

 

F1

 

 and 

 

F2

 

, whose 
resultant sum is exactly opposite to gravity’s force on the object, 

 

mg

 

.

But how long are those vectors? What is the tension in the string? We can 
easily show that , that is, the small triangles in the lower 
force diagram are similar to the larger triangle determined by the two cord 
segments. Therefore,

 

. (EQ 1)

 

This is in accordance with our experience and with the diagram: to balance 
the forces, the more vertical tension—which goes along the shorter cord seg-
ment—must be larger than the tension on the longer, more horizontal seg-
ment. Algebraically, this situation is analogous to that of a teeter-totter: we 
can rewrite the above as

 

. (EQ 2)

 

We imagine that this simple result will make many engineering calculations 
much easier in the future.

∆AHB ∆h'a'H∼

x1
x2
----- F2

F1
------=

x1 F1⋅ x2 F2⋅=
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On the Descent of Cotton Balls: a Theoretical Perspective

 

J. K. F

 

INKLEBOTTOM

 

 & P. R. P

 

RIEST

 

A

 

BSTRACT

 

Cotton balls fall more slowly than rocks in most situations. We present an extension to the 

 

traditional Newtonian view of objects to include free-falling cotton balls.

 

Cotton balls (which are sometimes made of Rayon) are puffs of fluff, roughly 
spherical, with a diameter of about 3 cm and a mass between 0.5g and 1.0g. 
If you drop them, they fall. 

It has been observed, however (Galileo and Snerd, 1998) that if you drop a 
rock and a cotton ball simultaneously from the top of a tower, the rock hits 
first.

Evidently air resistance slows the cotton ball more than the rock. We suggest 
that its effect is greater because the cotton ball is lighter. 

Our reasoning is this: Each air molecule, on impact, imparts a small force to 
a falling object. Using the traditional force formula  (Newton, 
1687), we see that each collision effectively reduces the gravitational acceler-
ation of any object falling through air by an amount that is inversely propor-
tional to that object’s mass (i.e., ). Thus the light cotton ball is 
slowed more than a comparably-sized (and heavier) rock.

Therefore we should modify the formula for the distance 

 

s

 

 fallen in time 

 

t

 

. 
Instead of the traditional

 

, (EQ 1)

 

where 

 

g

 

 is the acceleration of gravity, we suggest that the correct model for 
falling cotton balls is

 

(EQ 2)

 

where 

 

k

 

 is an acceleration smaller than 

 

g

 

.

Though the truth of our theory seems self-evident, we await confirmation 
from experiment.

F ma=

a F m⁄=

s 1
2
---gt2=

s 1
2
---kt2=
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Analysis of Thin-Lens Data

 

T. F

 

LINTHOFF

 

A

 

BSTRACT

 

We analyze image distance data and find an important relationship in optics

 

Figure 1: raw lens data

A recent investigation has yielded data that relates the distance from an 
object to a lens (which we will call ) to the distance from the lens to its 
corresponding image (which we will call ). A scatter plot of the raw data 
appears in the margin as Figure 1. One readily discovers that, although the 
data appear at first glance to be inversely related, no inverse function of the 
form  fits the data.

One can, however, transform the data. In particular, we can study the rela-
tionship between the reciprocals of the data  and , where  
and .

Figure 2: reciprocal lens data

We discover that while the relationship between  and  is complicated, 
the reciprocals  and  are linearly related, as shown in Figure 2.

The least-squares best-fit line in Figure 2 has the equation

 

. (EQ 1)

 

Rearranging, and re-substituting the original variables, we have

 

. (EQ 2)

 

While we do not understand the full significance of these two constants—
1.05 and 0.106—the fact that one is almost exactly 10 times the other can 
hardly be a coincidence. Apparently, each lens has associated with it a con-
stant we call its “Flinthoff number” , and that the universal equation relat-
ing image and object distance is

 

. (EQ 3)

 

We believe that this result will help immeasurably as researchers push back 
the boundaries of knowledge throughout the discipline of optics, and 
throughout physics in general. 

do
di

do K di⁄=

vo vi vo 1 do⁄=
vi 1 di⁄=

do di
vo vi

vi 1.05vo– 0.106+=

1
di
---- 1.05

do
----------+ 0.106=

ϕ

1
di
---- ϕ

do
-----+ ϕ

10
------=
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Energy Loss in Bouncing Balls
J. K. FINKLEBOTTOM, P. SNERD, AND J. M. W. DOOGIN

ABSTRACT

We discuss how bouncing balls lose energy. 

One easily observes that bouncing balls are not perfectly elastic. When a ball 
bounces, some energy is lost; as a consequence, the ball will never return to 
its original height, and eventually will come to rest.

This energy loss dissipates as heat (which is nearly undetectable) and sound. 
Some investigators such as Turpin (2001) suggest that energy is lost when 
the ball deforms during the process of bouncing. More precisely, the kinetic 
energy of the falling ball is converted into potential energy in the compressed 
ball (not unlike a spring), and is re-converted into kinetic energy as the ball 
bounces upwards.

It is this conversion process which is imperfect. Not all the falling kinetic 
energy is converted into potential energy, and not all the stored potential 
energy is converted into kinetic. Thus, on every bounce, an amount of 
energy, , is lost to the system.

This elegant theoretical model has some obvious consequences, easily veri-
fied by experiment. For example, a ball that strikes the ground with energy E 
will subsequently undergo  additional bounces. This is in 
accordance with casual observation: a ball dropped from a higher place will 
bounce more times.

Figure 1: results of the numerical 
simulation

One can also create a numerical simulation of the bouncing phenomenon. If 
each “row” is a bounce, and we are given the ball’s mass m, its initial down-
ward speed  and the energy loss , we can calculate the kinetic 
energy of the falling ball, the kinetic energy of the rising ball, and the corre-
sponding rising speed . From that, knowing the acceleration of grav-
ity, we can calculate how long it will take for the ball to land, where we have 
a new downward speed , which is equal to .

Running this simulation, we plot in Figure 1 the time between bounces as a 
function of the “bounce number”; we see that, as we expect, that time 
decreases rapidly. As we easily observe with real bouncing balls, the bounces 
get closer together the further the bouncing progresses.

∆E

NB E ∆E( )⁄=

Vdown 0( ) ∆E

Vup 0( )

Vdown 1( ) Vup 0( )
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On the Speed of Rolling Balls
W. L. W. CORPORAL AND A. GRAINYEAR

ABSTRACT

We present data to support a linear relationship between the distance a ball has rolled 
down a ramp and its speed.

It is a matter of elementary physics that an object moving with constant 
velocity has a position that increases linearly; and an object undergoing con-
stant straight-line acceleration has a position that increases quadratically. 
These truths are both embodied in the kinematic equation

(EQ 1)

where  is position,  is initial position,  is initial speed,  is accelera-
tion, and  is the elapsed time. (If , the formula simplifies into the 
linear case: constant velocity.)

This relationship holds, at one lower power, for the speed itself: the speed of 
an object with constant velocity is constant, and the speed of an object 
undergoing constant acceleration increases (or decreases) linearly. 

We test this notion by measuring the (instantaneous) speed of a ball, released 
from rest, after it has rolled down a ramp over different distances. 

Figure 1: data showing speed 
from different distances.

Figure 1 shows speed data for a tennis ball rolled down a straight ramp. The 
distances are the distances along the ramp in centimeters. The figure also 
shows a least-squares regression line; you can see that the fit is excellent with 
a value of . As you can see, the speed increases linearly, as we pre-
dicted. This also makes intuitive sense: the farther up the ramp you release a 
ball, the faster it is going when it reaches the bottom.

The principal parameter in the relationship—the slope of this line —
depends on the slope of the ramp, but also on properties of the ball (such as 
whether it is hollow or not) and other systemic effects (such as rolling fric-
tion).

This linear relationship will have many practical applications, notably in 
highway safety and roller-coaster design.

x x0 vit
1
2
---at

2
+ +=

x x0 vi a
t a 0=

r 1.00=


